
Noname manuscript No.
(will be inserted by the editor)

What happens in my code reviews? An investigation on
automatically classifying review changes

Enrico Fregnan · Fernando Petrulio ·
Linda Di Geronimo · Alberto Bacchelli

Received: date / Accepted: date

Abstract Code reviewing is a widespread practice used by software engineers
to maintain high code quality. To date, the knowledge on the effect of code re-
view on source code is still limited. Some studies have addressed this problem
by classifying the types of changes that take place during the review process
(a.k.a. review changes), as this strategy can, for example, pinpoint the im-
mediate effect of reviews on code. Nevertheless, this classification (1) is not
scalable, as it was conducted manually, and (2) was not assessed in terms of
how meaningful the provided information is for practitioners. This paper aims
at addressing these limitations: First, we investigate to what extent a machine
learning-based technique can automatically classify review changes. Then, we
evaluate the relevance of information on review change types and its potential
usefulness, by conducting (1) semi-structured interviews with 12 developers
and (2) a qualitative study with 17 developers, who are asked to assess reports
on the review changes of their project. Key results of the study show that not
only it is possible to automatically classify code review changes, but this infor-
mation is also perceived by practitioners as valuable to improve the code review
process. Data and materials: https://doi.org/10.5281/zenodo.5592254

Keywords Modern Code Review · Empirical Software Engineering · Review
Changes · Automatic Classification.

1 Introduction

Contemporary peer code review is a lightweight and informal process in
which developers (a.k.a., the reviewers) judge the quality of a newly proposed
set of code changes, using a dedicated software tool [11].

Enrico Fregnan, Fernando Petrulio, Linda Di Geronimo, Alberto Bacchelli
University of Zurich, Switzerland
E-mail: fregnan@ifi.uzh.ch, fpetrulio@ifi.uzh.ch, digeronimo@ifi.uzh.ch, bacchelli@ifi.uzh.ch

https://doi.org/10.5281/zenodo.5592254


2 Enrico Fregnan et al.

Fig. 1 Example of changes induced by a code review in JGit. For instance, at line 193
the reviewer asks to substitute the magic number ”200” with a variable with a mean-
ingful name. (https://git.eclipse.org/r/c/jgit/jgit/+/111364/20..21/org.eclipse.
jgit.lfs/src/org/eclipse/jgit/lfs/LfsPrePushHook.java).

Despite the substantial practical adoption of code review [76], the knowl-
edge on its effects—and how to measure them—is still limited. For instance,
how can benefits such as knowledge transfer among developers be quantita-
tively assessed? Past research (e.g., [8, 27]) found a strong mismatch between
what developers and managers think to obtain from code review (i.e., catching
important defects early) vs. what they actually obtain (i.e., catching very few,
localized, low-level defects).

This mismatch is not surprising: Assessing the effect of the code review
process is a complex task and existing evaluation tools provide basic informa-
tion, at most. Nevertheless, a number of empirical software engineering studies
(e.g., [8, 17, 46, 58, 61, 62, 89, 91]) did manage to devise approaches able to
assess certain aspects of the effect of code review and have provided valuable
information to researchers on the topic.

In particular, three studies [8, 17, 58] looked at the code review process
from a new perspective that investigates review changes: the changes to the
code that are implemented at review time (Figure 1 shows an example of these
review-induced changes).

Under this perspective, these studies could (1) determine that most code
reviews do not affect the functionalities of source code [8, 17, 58], (2) find
the aforementioned mismatch between expectations and outcome in code re-
view [8], and (3) lay out a number of other, previously undocumented, effects
of code review [8]. The key idea behind this perspective is an approach that
evaluates the code review process by classifying the types of review changes.
This approach answers questions such as: “Are most review changes fixing

https://git.eclipse.org/r/c/jgit/jgit/+/111364/20..21/org.eclipse.jgit.lfs/src/org/eclipse/jgit/lfs/LfsPrePushHook.java
https://git.eclipse.org/r/c/jgit/jgit/+/111364/20..21/org.eclipse.jgit.lfs/src/org/eclipse/jgit/lfs/LfsPrePushHook.java


What happens in my code reviews? 3

functional defects or improving other aspects of the code?” “What kind of
defects are found most frequently during review?”

Two critical advantages of studying review changes are: (1) It pinpoints
exactly the immediate effect of code review on code and (2) it is not influ-
enced by the external confounding factors (e.g., change-proneness of artifacts
or adjustments in the development process) affecting other long-term metrics,
such as defect proneness [61].

In recent years, researchers focused on devising tools that leverage data
from software development practices [10, 18, 96]. In particular, researchers at
Microsoft developed a tool, CodeFlow Analytics (CFA), to collect and display
to developers information about the code review process [19]. CFA was cre-
ated to answer development teams’ requests to easily analyze and monitor
their code review data. Bird et al. reported how CFA (1) successfully enabled
development teams at Microsoft to monitor themselves and improve their pro-
cesses and (2) having code review data at disposal stimulated further research
to improve the code review process.

Based on the good welcome received by CFA, we believe that integrating in-
formation on review changes in a similar tool might be the next natural step to
allow development teams to gain further insights in their code review process.
This information could drive the team to reflect on the code review practices
they have in place. For instance, if the majority of changes are documentation
changes could not these be catched earlier in the development phase (e.g., us-
ing static analysis tools or improving the style guidelines of the project). This
could allow developers to allocate more time in looking for functional defects,
critical for the success of the project.

Nevertheless, the application of this approach to help developers to assess
their review process is currently limited by two factors. First, the review-
induced changes have to be manually classified: This aspect clearly impacts the
scalability of the approach, as it can not easily be applied at large. Second, the
target of such effort in classifying review changes has mostly been the research
community and it is still unclear whether and how its output is meaningful to
practitioners.

In this paper, we present a two-step empirical investigation we conducted
to address these limitations. First, we investigate whether review changes can
be automatically classified using a supervised machine learning approach; this
with the goal of solving the scalability issue. To this end, (1) we manually
classify 1,504 review changes using Beller et al.’s taxonomy [17]; (2) we select
30 features based on the analysis of prior work [23, 34] as well as the insight
acquired constructing the dataset; (3) we evaluate three machine learning algo-
rithms to automatically classify review changes at two different levels of gran-
ularity. Our results show that the evaluated solution classifies code changes
with an AUC-ROC beyond 0.91. This finding provides evidence that machine
learning can be effectively employed to classify review-induced changes.

In the second part of our investigation, we focus on collecting feedback from
developers. Our goal is two-fold: Analyzing developers’ perception concerning
the classification of review changes as mean to support review practices as well



4 Enrico Fregnan et al.

as evaluating our approach in a real-world scenario. To this aim, (1) we inter-
viewed 12 developers with experience in code review, and (2) we sent reports
generated with our approach to 20 open-source projects, receiving feedback
from 17 developers. Practitioners positively assessed the novelty of the in-
formation on review changes and gave an initial indication of the potential
usefulness of this information, particularly for project managers interested in
improving the code review process.

2 Background and Related Work

The topic of code inspection [32] has been largely explored in the past [12,
70, 95] and, in the last decade, both research community and practitioners
switched to the more practical concept of modern code review [8]. In this
respect, researchers have been investigating methodologies and techniques to
provide support for developers during the code review process. For instance,
researchers have devised automated solutions to identify proper reviewers for
a new code change [49, 64, 90, 98], as well as investigated both the factors
making the process more/less effective [13, 15, 21, 47, 60, 74, 83, 91] and the
actual influence of code review on the resulting software quality [5, 46, 61, 62,
71, 76, 77, 81, 84, 93].

In the context of our work, we are mainly interested in review-induced
changes (or simply review changes). These are the changes to which the code
undergoes as result of the review process: e.g., as consequence of a reviewer’s
comment (as shown in Figure 1). However, changes to the code can also be
triggered by other factors: e.g., a spontaneous action from the code author
or informal discussions among developers. In this paper, our main goal is to
overcome the current limitations to classify review changes and evaluating how
this data can be used to support developers during code review. For this reason,
in this section we focus on the discussion of previous papers that previously
faced the problem of classifying review changes. Surveying the literature, we
found three main works.

In the first place, Bacchelli and Bird [8] analyzed the code review process
in place at Microsoft, revealing a number of underestimated goals and ben-
efits: among them, they pointed out that knowledge transfer and awareness of
design solutions among team members are key aspects of modern code review.
Bacchelli and Bird [8] also highlighted that the main challenge for practitioners
while performing code review is the comprehension of the newly committed
code changes. This finding motivates our work, as it suggests the need for
solutions able to help in classifying and showing to reviewers which changes
have been performed.

Other papers aimed at characterizing which defects can be identified during
code review. In this direction, Mäntylä and Lassenius [58] were the first to
empirically explore the types of defects discovered in code review sessions as
well as their distribution in both industrial and academy contexts. To this
aim, the authors assessed the outcome of over 100 code review sessions and
defined a taxonomy of code changes. Their main finding reports that 75% of



What happens in my code reviews? 5

category type

category type

review change

evolvability

functional

documentation

visual 
representation

structure

textual

supported by 
language

organization

solution 
approach

resource

check

interface

logic

support

larger defect 

Fig. 2 Taxonomy [17] for review-induced changes with their categories/types.

the inspected reviews identify defects that do not affect the external behavior
of source code.

A further step toward this research direction has been made by Beller et
al. [17], who further explored what changes are performed in code reviews
of open-source systems, with the aim of investigating what the real benefits
provided by modern code review are. They considered over 1,400 code changes,
manually labeling them using the taxonomy of Mäntylä and Lassenius [58],
whenever possible. As a result, they came up with an updated taxonomy of
code changes done in code review, which is shown in Figure 2.

Taxonomy of review changes. The taxonomy of Beller et al. presents two
main categories, namely (1) Evolvability changes, which are related to all the
modifications that do not have an effect of the functionalities implemented in
the source code (e.g., those targeting documentation and refactoring) and (2)
Functional changes, which are those that change the structure of the code,
thus impacting on the inner-work of a program. These two main categories
were then refined to report the specific types of evolvability and functional
changes. A description of each type of change, together with an example from
a real-world scenario, is available in Section 2.1 and Section 2.2. Moreover,
each type can be further divided into subtypes. Two tables offering a complete



6 Enrico Fregnan et al.

description of changes types and subtypes, respectively, can be found in our
replication package [35].

Our work is clearly inspired by the paper by Beller et al. [17] and aims
at studying deeper the value of their findings: We investigate a technique to
overcome the scalability limitations of their classification approach and assess
with developers the value such information on review changes.

2.1 Evolvability changes

Evolvability changes can be defined as maintainability changes, which, there-
fore, do not have an impact on the functionalities of a system. Based on the
taxonomy by Beller et al. [17], they can be divided in five types:

Textual: Textual changes concern the use of textual information in the code.
In particular, they impact logging messages, adding or updating comments,
or renaming variables to be more consistent with the environment.

Fig. 3 Example of Textual change, where a comment was rephrased for consistency with
similar comments. The real-world code review in which this change took place is available
online.

Supported by language: Supported by language changes impact program-
ming language-specific features used to convey information: e.g., the use
of the final or static keywords in Java.

Fig. 4 Example of Supported by language change, where the class that extends
FtsServerOverloadExcpetion has been changed from CouchbaseException to Temporary-
FailureException. The real-world code review in which this change took place is available
online.

http://review.couchbase.org/c/couchbase-java-client/+/57530/3..4/src/main/java/com/couchbase/client/java/bucket/AsyncBucketManager.java#b258
http://review.couchbase.org/c/couchbase-java-client/+/99952/1..2/src/main/java/com/couchbase/client/java/error/FtsServerOverloadException.java


What happens in my code reviews? 7

Visual representation: Visual representation changes are related to the style
of the code: e.g., they concern the wrong use of indentation in the code or
the presence of unnecessary new lines and whitespaces.

Fig. 5 Example of Visual representation change where a reviewer requested to change the
code indentation. The real-world code review in which this change took place is available
online.

Organization: Organization changes involve a re-arrangement of the code. For
instance, an organizational change can remove unused portions of code or
move a method into a different class to improve the structure of the project.

Fig. 6 Example of Organization change where a portion of dead code has been removed.
The real-world code review in which this change took place is available online.

http://review.couchbase.org/c/couchbase-java-client/+/100606/2..3/src/main/java/com/couchbase/client/java/transcoder/crypto/JsonCryptoTranscoder.java#b138
http://review.couchbase.org/c/couchbase-java-client/+/19606/2/src/main/java/com/couchbase/client/ViewConnection.java#b246


8 Enrico Fregnan et al.

Solution approach: Solution approach changes modify the way in which a
system’s functionality is implemented, without modifying the functionality
itself: e.g., the removal of magic numbers in favor of predefined constants.

Fig. 7 Example of Solution approach change. In this example the assert instructions has
been changed for a more clear alternative without altering its functionality. The real-world
code review in which this change took place is available online.

2.2 Functional changes

Functional changes are modifications that impact the functionality of a system
to ensure the correct flow of the program. Based on the taxonomy proposed
by Beller et al. [17], functional changes can be divided in six types:

Resource: Resource changes impact how the data are handled. They typically
happen to solve issues in how the code manages data.

Fig. 8 Example of Resource change where the data buffer is closed in order to avoid un-
expected results in the computation. The real-world code review in which this change took
place is available online.

Check: Check changes are introduced to verify conditions of variables and
functions left previously unchecked (possibly leading to run-time errors).

http://review.couchbase.org/c/couchbase-java-client/+/18094/4..5/src/test/java/com/couchbase/client/ViewTest.java#b286
http://review.couchbase.org/c/couchbase-java-client/+/62350/1..2/src/integration/java/com/couchbase/client/java/util/CouchbaseTestContext.java#b344


What happens in my code reviews? 9

Fig. 9 Example of Check change: A check is introduced to enforce that the object side is
not null. The real-world code review in which this change took place is available online.

Interface: Interface changes impact the way the code interacts with other
parts of the system: e.g., the use of incorrect parameters in a function call.

Fig. 10 Example of Interface change that solve an issue with the incorrect order of param-
eters. The real-world code review in which this change took place is available online.

Logic: Logic changes solve issues in the logic of the system: for instance, when
an algorithm produces incorrect results.

Fig. 11 Example of Logic change. In the given example, a check on the response status
needs to be moved to allow a correct release of the content buffer. The real-world code
review in which this change took place is available online.

http://review.couchbase.org/c/couchbase-java-client/+/102501/1..2/src/main/java/com/couchbase/client/java/query/dsl/path/HashJoinHintElement.java#b35
https://git.eclipse.org/r/c/jgit/jgit/+/44126/2..3/org.eclipse.jgit/src/org/eclipse/jgit/util/TemporaryBuffer.java#543
http://review.couchbase.org/c/couchbase-java-client/+/71319/1..2/src/main/java/com/couchbase/client/java/bucket/DefaultAsyncBucketManager.java#b189


10 Enrico Fregnan et al.

Support: Support changes solve issues related to support libraries (or systems)
and their configuration: e.g., defects caused by the use of a wrong version of
an external library.

Fig. 12 Example of Support change, where new modules are added to the configuration
settings to improve the security and stability of the system. The real-world code review in
which this change took place is available online.

Larger defect: Larger defects changes are modifications that address major
issues in the code, often spanning across several classes: for instance, when
a class is left partly implemented.

Fig. 13 Example of Larger defect change where an entire missing piece of code was added
to the method. The real-world code review in which this change took place is available
online.

https://android-review.googlesource.com/c/platform/art/+/839418/2..3/libartbase/base/common_art_test.cc#b336
http://review.couchbase.org/c/couchbase-java-client/+/89902/3..4/src/main/java/com/couchbase/client/java/document/json/JsonObject.java#b262


What happens in my code reviews? 11

3 Research Questions

The goal of this study is to understand (1) whether it is possible to devise an
approach to automatically classify code review changes and (2) to what extent
developers perceive information about review changes as useful (e.g., because
these changes raise awareness about the outcome of the code review process
in their projects). The perspective is of both researchers and practitioners.
The first are interested in exploiting this new source of information to build
analytics tools and devise new strategies to further support developers, while
the latter aim to use this information to improve their processes and the overall
quality of their software systems.

We start our investigation by focusing on whether a machine learning-based
solution can automatically classify code review changes into the taxonomy
proposed in prior work [17, 58]. A positive outcome would give us confidence
that it is possible to overcome the scalability issues of this approach [8, 17, 58].
Hence, we ask:

RQ1: How accurately can a machine learning approach classify review
changes?

To the best of our knowledge, no previous attempts have been made to
devise approaches to automatically classify review changes. For this reason,
in RQ1 we could not compare our results with other existing approaches. In
our investigation, we evaluated our approach in terms of AUC-ROC, using as
baseline a random classifier. Having achieved promising results with the auto-
mated approach, we proceed to evaluate how information on review changes
can be relevant for practitioners. To gather in-depth knowledge of the develop-
ers’ perception of the meaningfulness of our approach as well as the usefulness
of classifying review changes for review practices, we devise a two-step investi-
gation. First, we conduct semi-structured interviews with developers to gather
their opinions on data on types of review changes as a mean to support code
review practices (e.g., as a way to measure the effects of code review) and on
the relevance of the taxonomy used for the classification. We ask:

RQ2.1: How do developers perceive data on review changes and its use to
support review practices?

Informed by the feedback gathered during the interviews, we devise reports
based on review change data and investigate how experienced developers from
open-source software projects perceive these reports. Therefore, our last re-
search question is:

RQ2.2: How do project maintainers evaluate reports presenting review
change data for their projects?



12 Enrico Fregnan et al.

Our study features a mixed-method research approach [42] that includes
(1) quantitative analysis on the performance of the investigated automated
approach [29], (2) semi-structured interviews [55], and (3) customized surveys
with developers from open-source software systems [33]. The next sections
describe methodology and results for each research question.

4 RQ1: Classifying Types of Review Changes

The first necessary step to use information about the types of review changes
as a mean to support practitioners is to overcome the existing scalability issues
(i.e., review changes have to be manually classified [8, 17, 58]). Here, we inves-
tigate an approach to automatically classify review changes and we evaluate
its accuracy. In this study, we limit ourselves to the case of code changes in
Java source code.

4.1 The Evaluated Approach

We design the proposed review changes classifier as a machine learning-based
solution (available in our replication package [35]). This choice is motivated
by three main factors: (1) the amount of code review data available (e.g.,
in projects using Gerrit [2]) that make supervised approaches practically
suitable, (2) the restrictions of heuristics-based techniques, which may lead to
approaches limited to certain programming languages, and (3) the ability of
machine learning classifiers to identify the most suitable features to use and
learn from previous changes applied by developers. To investigate the accuracy
of a machine-learning based approach, we make the following steps:

Dataset Selection. To select the projects to build our review changes dataset,
we start from Crop [65], a publicly available and curated code review
dataset. Crop contains projects that use Gerrit as code review platform
and those review data are publicly available. From the two communities
(Eclipse and Couchbase) represented in Crop, we select JGit and Java-
Client. These projects are (1) Java-based and (2) large open-source sys-
tems (ranging from 85k to 145k lines of code). Furthermore, the selected
projects possess an active community of developers and reviewers, which
makes them ideal targets of our investigation. We limited our selection to
two projects from the CROP dataset to ensure that our classification covers
a number of cases sufficient to report even the occurrences of uncommon
types of changes. On the contrary, covering less cases from a more vast se-
lection of projects might introduce bias in the types of changes contained in
our dataset, under-reporting changes that occur less frequently. Moreover,
we also consider Android, one of the most widely used projects in code
review research. Android has a long development history with many active
developers and reviewers and has been shown to be highly representative
the code review practices of open-source projects [14, 60, 61, 68].



What happens in my code reviews? 13

Dataset Labeling. To build and evaluate a supervised machine learning ap-
proach, we need reliable information on the actual labels to assign to the
considered modifications (i.e., an oracle of code change types). With the
labeled data, the approach learns from a subset of the labeled changes and
can be tested on the remaining ones. To this aim, the first author of this pa-
per manually classified the changes according to the taxonomy proposed by
Beller et al. [17], relying on (1) the source code of each modification and (2)
the code comments left by developers on Gerrit. To each change was as-
signed both a category (Evolvability or functional) and a type. A description
of each type is provided in Section 2. These changes were selected randomly
choosing review IDs (i.e., a unique identifier assigned to a review in Gerrit)
among all merged reviews in the considered project. Then, we performed a
second step randomly choosing a patch set among the ones contained in the
review. We excluded from this selection the first patch since we were not
interested in changes done before the beginning of the review process. The
labeling process took place between March 2019 and August 2019.

Labeling Granularity. While analyzing the labeled dataset, we noticed that
types of changes, such as Larger defect or Support are very uncommon. This
observation was confirmed by previous studies: In their analysis Mäntylä
and Lassenius found only eleven changes belonging to the larger defect type
and no changes belonging to the support type [58]. Similar results have been
obtained also by Beller et al. [17]. Moreover, the overall amount of func-
tional changes is significantly lower compared to the number of evolvability
changes: Only 6.89% of all changes in our dataset belong to the functional
category. This might significantly impact the performance of the devised
classification approach as it would not have enough instances of each type of
change to be able to make accurate prediction at type-level. For this reason,
we argue that considering all eleven type labels might negatively impact the
performance of our machine-learning approach.
Restricting our classification approach to work only at category-level might
also not be an effective solution: We argue that the information offered by
the categories might be too coarse-grained to offer valuable insight in the
code review process. For these reasons, we devise the concept of group as an
intermediate level of granularity for labels between categories and types. We
define changes groups as follows. Referring to the taxonomy presented in Fig-
ure 2, we aggregate types into their corresponding higher classes: ‘textual’
and ‘supported by language’ changes were considered as ‘documentation’
changes, while ‘organization’ and ‘solution approach’ changes as ‘structure’
ones. Therefore, a change group can be one of the following: ‘documentation’,
‘visual representation’, ‘structure’, or ‘functional’. Based on this considera-
tion, we assigned to each change in our dataset an additional label reflecting
the group to which it belongs. Then, we tested the performance of our model
at both category and group level.



14 Enrico Fregnan et al.

1

1

1

Fig. 14 Example of logically linked review changes, therefore, labeled with the same ID.
These changes gave origin to three modifications. The real-world code review in which this
change took place is available online.

Fig. 15 Example of a modification containing only an old code chunk. The real-world code
review in which this change took place is available online.

Fig. 16 Example of a modification containing only a new code chunk. The real-world code
review in which this change took place is available online.

Instance Unit. When labeling the review changes, we assigned the same ID
to multiple changes when they were logically linked together: e.g., multiple
changes involving the renaming of the same variable (as shown in Figure 14).
However, the granularity of our approach is the individual code change,
which we call modification (an example of modification is shown in part

1 in Figure 14). More precisely, a modification is composed of a pair of
code chunks (i.e., a group of continuous modified code lines): an old code
chunk reporting the code removed in a change, and a new one representing
the added code. However, a modification might not include (1) an old code
chunk in case the code was only removed (Figure 15) or (2) a new code
chunk if the code was added without removing anything (Figure 16).

We mined Gerrit to extract the related code chunks for each of the review
changes in the labeled dataset. However, the Gerrit API does not allow
to extract information on the link between the old and new code chunks.
Furthermore, although Gerrit UI displays related old and new code chunks
together, this link is made based on the changes line number and not their

https://git.eclipse.org/r/c/jgit/jgit/+/49966/3..4/org.eclipse.jgit/src/org/eclipse/jgit/transport/BaseReceivePack.java
https://git.eclipse.org/r/c/jgit/jgit/+/1281/5..6/org.eclipse.jgit/src/org/eclipse/jgit/storage/file/FileRepository.java
https://git.eclipse.org/r/c/jgit/jgit/+/77733/2..3/org.eclipse.jgit.test/tst/org/eclipse/jgit/transport/RefSpecTest.java


What happens in my code reviews? 15

Table 1 Modification groups in our dataset.

Group Number of changes Percentage of changes

Documentation 1276 48.33%
Visual representation 402 15.23%
Structure 780 29.55%
Functional 182 6.89%

content. Old and new code chunks impacting the same lines of code are re-
liably linked together. However, this is not the case when the old and new
code chunk impact different code lines: e.g., when a function declaration is
moved in a class. For these reasons, we need to link related old and new
code chunks by ourselves. Keeping the old and the new code chunks sepa-
rated, the designed approach computes the Levenshtein distance [97] among
each old chunk and all the new ones. This process leads to the construc-
tion of a weighted bipartite graph, where each code chunk is a node and
the computed distance represents the weight of the link. Then, it selects
the pair that has the lowest distance, links them into a modification, and
removes them from the graph. Finally, our linking approach proceeds iter-
atively among the remaining nodes in the graph. If multiple links have the
same weight, it relies on the assumption that related code chunks are likely
to have similar positions in the file. We tested our linking approach against
all modifications contained in our dataset, after removing changes contain-
ing only import statements. The proposed approach reached a precision of
86.07% and an accuracy of 89%. Furthermore, we removed modifications
containing only import statements as they might introduce potential bias in
the classification approach. Chunks containing only import statements are
logically linked to the chunks where the imported entities are used, sharing
a common classification (category and type). Once grouped into modifica-
tions, these import chunks might have similar characteristics but different
types, potentially reducing the classifier performance. Overall, this leads to
2,641 modifications. Each modification has two corresponding labels report-
ing its category (evolvability or functional) and its group (documentation,
visual representation, structure or functional), respectively.
From Table 1, we see that functional changes represent less than the 7% of all
modifications considered, while ‘documentation’ changes constitute 48.33%
of the whole dataset, ‘visual representation’ the 15.23%, and ‘structure’ the
remaining 29.55%. Such a distribution of changes confirms the findings pre-
viously reported in literature [8, 17, 58].

Labeling validation. To evaluate the reliability of the manually assigned la-
bels, a second author performed an independent labeling of a statistically
significant subset of the labeled dataset (306 changes, leading to a confidence
level of 95% and a margin of error of 5%). Comparing the labels given by the
two authors, 90% of the categories labels matched perfectly as well as 75%
of the type labels. In the other cases, the two inspectors opened a discussion
to reach a consensus and the dataset was adapted accordingly. To measure



16 Enrico Fregnan et al.

Table 2 Code Metrics employed in the evaluated approach at code chunk level.

Metric
Description Rationale

LOC
Number of lines of code
contained in the code
chunk

The considered four groups of changes involve chunks of code
of different sizes. For instance, visual representation changes
often influence few lines of code, while a structure change
might require to move an entire function (leading to a change
with a high LOC). We further analyze this aspects by looking
at LOC Comments, LOC Exec, and LOC Blank separately.

LOCComments
Number of code com-
ments lines contained
in the code chunk.

Documentation review changes often involve comments [58].
Therefore, changes with high LOCComments are likely to be-
long to the documentation group.

LOCExec
Number of lines of ex-
ecutable code in the
code chunk.

Structure changes often require to modify large portions of
code (e.g., removing unused functions), while changes in the
other groups generally impact only few lines of code.

LOCBlank
Number of blank lines
in the code chunk.

Visual representation changes improve the layout of the code
without affecting its functionality. For instance, a change con-
taining only blank lines is likely to belong to the visual repre-
sentation group.

First character
First character of the
code chunk.

Specific initial characters in Java might indicate the nature
of the change: e.g., the character “@” is likely to introduce a
Java doc comment. Similarly, a “\” character might indicate
that the change is a documentation change.

End character
Last character of the
code chunk.

Specific ending characters in Java indicate the nature of the
change: e.g., the character “\” is likely to conclude a comment.
If a comment is added at the end of a code instruction, this line
might not be reflected in the LOCComments. We introduced
this metric as a way to deal with such particular scenarios.

Cyclomatic complexity
McCabe Cyclomatic
complexity of the code
chunk.

Documentation and visual representation changes possess
low cyclomatic complexity, while structural and functional
changes often involve the addition/removal of, for instance,
functions. This leads to a higher cyclomatic complexity.

the inter rater agreement between the two authors we computed Krippen-
dorff’s alpha coefficient [51] achieving a measure of 0.447 for the categories
labels and 0.673 for the type labels. Although the alpha value for categories
labels reports only a moderate agreement, we argue that this reflects the
intrinsic unbalance in our dataset: Evolvability changes happen significantly
more often during code review compared to functional changes [17, 58].

Machine-learning Features. As features of the machine learning algorithm,
we selected metrics with three different scopes: the code in the old chunk,
the code in the new chunk, and the difference between them. Table 2, Table 3,
and Table 4 show a summary of the metrics, grouped by their scope (the
single code chunk or the whole modification) and the rationale behind them.



What happens in my code reviews? 17

Table 3 Code Metrics employed in the evaluated approach at modification level.

Metric
Description Rationale

LOC diff
Difference between the
LOC of the old and
new code chunk.

A structure modification often involve the addition or removal
of a high number of lines of code between the old and new
code chunk. On the contrary, a documentation modification
might involve a simple variable renaming, therefore having a
low LOC diff.

LOCExec diff
Difference between the
LOCExec of the old
and new code chunk.

Similarly to what stated for LOCExec, a high difference in
LOCExec between the old and new chunk in a modification
indicates that a vast portion of code was added or removed,
pointing towards structure or, rarely, functional modifications.

LOCComments diff
Difference between
the LOCComments of
the old and new code
chunk.

Similarly to what stated for LOCComments A high LOCCom-
ments diff between the old and new code chunk might a strong
indicator of a documentation change.

Cyclomatic diff
Difference between the
Cyclomatic complexity
of the old and new code
chunk.

The difference in cyclomatic complexity between the old and
new code chunk in a modification reflect the addition/deletion
of, for instance, code cycles. The inclusion of this feature might
support the classifier in identifying functional and structure
changes. Documentation and visual representation changes
generally do not impact the cyclomatic complexity of a code
chunk.

#Added words
Number of words
added in the new code
chunk.

Some modifications involve the addition of only few instruc-
tions in the same line of code. For instance, Interface func-
tional changes often only involve the addition of a missing pa-
rameter, leaving the rest of the code line unmodified. A similar
situation can occur with Logic changes, where a change often
impact a single element of a comparison statement.

#Deleted words
Number of words re-
moved from the old
code chunk.

Some modifications involve the removal of only few instruc-
tions in the same line of code. Similarly to #Added words, this
metric allows to capture functional changes that modify only
few words in a line of code.

#Added characters
Number of characters
added in the new code
chunk.

Some changes impact only few characters in a change. For
instance, check or logic functional changes might involve the
modification of few characters (e.g., a numerical variable) in
a conditional statement.

#Deleted characters
Number of characters
deleted in the old code
chunk.

Similarly to #Added characters, functional changes (e.g.,
check or logical) might require the removal of only few char-
acters in a line of code.

#Methods diff
Difference between the
number of methods in
the old and new code
chunk.

Structure and functional modifications might remove unused
or wrong function calls and/or add new function calls. There-
fore, we included this feature in our model.

#Methods changed
Number of methods
changed in the modifi-
cation.

Similarly to #Methods diff, based on our observations while
constructing the dataset, a high number of methods changed
might indicate a structure of functional modification.

#Methods added
Number of methods
added in the new code
chunk.

Similarly to #Methods diff, based on our observations while
constructing the dataset, a high number of methods changed
might indicate a structure of functional modification.

#if diff
Difference in the num-
ber of if statements be-
tween the old and new
code chunk.

The two most prominent types of functional changes, check
and logic [17], involve modification or addition of conditional
statements. Our hypothesis is that the difference in the num-
ber of if statements in a modification might help in identifying
functional changes.

#Added if
Number of added if
statements in the new
code chunk.

Similarly to #if diff, we argue that the difference in the num-
ber of if statements added in the new code chunk of a modi-
fication might help in identifying functional changes.



18 Enrico Fregnan et al.

Table 4 Code Metrics employed in the evaluated approach at modification level.

Metric
Description Rationale

#Cycles diff
Difference in the num-
ber of cycles (for and
while) between the old
and new code chunk.

Similarly to #if diff, the addition of a high number of cycles
might indicate the presence of logic functional change.

Levenshtein Distance
Levesthein distance be-
tween the old and new
code chunk.

The Levenshtein distance might quantify the impact of a mod-
ification. Structure modifications might have a high distance
between the old and new code chunk since they involve the
addition/removal of vast portions of code. On the other hand,
modifications such as variable renaming, often impact only
few characters in the code chunk, therefore leading to a small
distance between the old and new chunk.

#Keywords
Number of Java key-
words removed or
added in the modifica-
tion.

We looked for specific Java keywords to understand if a mod-
ification impacted variables or method definitions. For in-
stance, this might shown the presence of supported by lan-
guage changes. We consider the following keywords: private,
public, protected, static, final, volatile, this, and void.

Keyword
If #Keywords equals 1,
it contains the specific
keyword modified.

The presence of a specific Java keyword can indicate if the
change impacted a variable or method declaration.

#New diff
Difference in the num-
ber of new objects cre-
ated between the old
and new code chunk.

Organizational modification might remove unused objects. On
the contrary, the presence of new objects declarations in the
new chunk might point to a functional or solution approach
modification.

#New added
Number of new objects
added in the new code
chunk.

Similarly to #New diff, the presence of new objects might
point to a functional or solution approach modification.

#Assignment diff
Difference in the num-
ber of assignments be-
tween the old and new
code chunk.

Functional or solution approach modification might introduce
new variable assignments in the new code chunk. On the
contrary, documentation or visual representation modification
keep the number of variable assignments unaltered between
the old and new code chunk.

#Sum/difference diff
Difference in the num-
ber of sums/differences
operations in the old
and new code chunk.

Logic changes, (in particular their sub-type compute
changes [58]) can fix computational mistakes in the code. Con-
sidering the removal or addition of sum/difference operations
in the code might help identify these kind of changes. We did
not consider multiplication or division operations as the sym-
bols used to denote them in Java is also used for other pur-
poses: e.g., in combination with “\” to introduce multi-line
comments.

#Comma diff
Difference in the num-
ber of commas between
the old and new code
chunk.

Commas in Java are often used in assignment statements.
We introduced this metric to work together with #Assign-
ment diff to cover cases left unaddressed by it. Differences in
the number of variable assignments might indicate resource
changes (a type of functional changes).

#Round brackets diff
Difference in the num-
ber of round brackets
between the old and
new code chunk.

We use this metric as a proxy for the number of loops and
method calls contained in the old and new code chunk. In
particular, the introduction of a method call in the new code
chunk might reveal the presence of a functional change.

Brackets
The code changed in
the modification is in-
cluded in round brack-
ets.

Functional changes (for instance, check and interface changes)
modify a comparison, a check statement or a method call. In
Java, these operations are included between round brackets.



What happens in my code reviews? 19

Table 5 Metrics derived from the analysis of review change comments.

Metric Words

comment word comment; style; messag; string; log; error; read
method word method; scope; enum; tag; call
return word return
change word chang; remov; miss; order; delet; sort
final word final
test word test; bug
add word add; implement; ad

The rationale behind each of the metrics selected for our investigation based
on the literature and our observations during the creation of the dataset.
We combined common code analysis metrics (e.g., LOC, LOCExec, or Cy-
clomatic Complexity) with a selection of code readability metrics: number of
commas or number of cycles [23]. The selection of these metrics is based on
an analysis of the literature on what can characterize the type of a modifica-
tion performed by developers [34] and what can capture the nature of source
code under different perspectives. The metrics that work at code chunk level
are computed for both the old and the new code chunk in a modification.
To compute the selected metrics, we extracted from Gerrit the code snippet
of each review change contained in our datasetusing the java implementation
of the Gerrit REST API.1 Based on the retrived code snippets, we then
computed the selected code metrics. The code developed to extract and
compute the metrics is available in our replication package [35] as part of
the devised machine-leaning approach.

We also consider the comments associated with a modification (if any). The
first of these metrics is words in comment, a metric that counts the number
of words included in a comment. In computing this metric, we considered
the main comment and all its replies as a unique entity. Our hypothesis
is that modifications belonging to different categories or types involve a
different amount of discussion (e.g., the request to change an algorithm might
require more explanations than adding a missing comment). We collected
the comments related to each code change using the Java implementation
of the Gerrit REST API, in a similar fashion to what done for the code of
each change. Subsequently, we analyzed the content of comments. To this
aim, we first follow a typical Information Retrieval normalization process [9]
involving tokenization, lower-casing, stop-word removal, and stemming [72].
After these pre-processing steps, we computed the 50 most frequent words
taking into account the whole corpus of comments of our dataset. Based on
this analysis, we cluster them into seven groups grouping together words
indicating a similar operation on the code (e.g., remove and delete): We
define groups of words that could help the classifier to distinguish between
different change types. The defined group of words are reported in Table 5

1 Java Gerrit REST API: https://github.com/uwolfer/gerrit-rest-java-client

https://github.com/uwolfer/gerrit-rest-java-client


20 Enrico Fregnan et al.

Table 6 Gain Ratio of the ten most relevant features to predict change categories or groups,
respectively. When a metric is computed at code chunk-level, we specify between brackets
if it is related to the new or the old code chunk in a modification.

Category Group

Feature Gain Ratio Feature Gain Ratio

#Added if 0.0938 LOCExec (new chunk) 0.1523
#if diff 0.0782 #if diff 0.1299
return word 0.0564 #Added if 0.129
#Assignment diff 0.0483 #Cycles diff 0.122
Cyclomatic diff 0.0396 LOCBlank (old chunk) 0.1192
LOCComments (new chunk) 0.0320 LOCComments (new chunk) 0.118
LOCComments diff 0.0267 LOCExec diff 0.1118
#New diff 0.0232 #Sum/difference diff 0.1089
LOCExec (new chunk) 0.0218 #Assignment diff 0.1086
#Comma diff 0.0199 LOC Blank (new chunk) 0.1074

Table 7 Pearson’s correlation value of the ten most relevant features to predict change
categories or groups, respectively. When a metric is computed at code chunk-level, we specify
between brackets if it is related to the new or the old code chunk in a modification.

Category Group

Feature Corr. value Feature Corr. value

#Added if 0.2776 #Methods added 0.2128
#Methods added 0.0636 Levenshtein distance 0.1349
Levenshtein distance 0.0616 #New added 0.1293
Comments words 0.0406 #Added if 0.1115
LOCComments diff 0.0388 End character (new chunk) 0.1078
First character (old chunk) 0.0375 Cycl. complexity (new chunk) 0.1048
#Sum/difference diff 0.0362 First character (new chunk) 0.1002
#Added words 0.0307 End character (old chunk) 0.0865
#Deleted words 0.0282 First character (old chunk) 0.0863
#Comma diff 0.0280 #Methods diff 0.0855

Machine-learning Algorithm. We experiment with three different classifiers:
Random Forest, J48, and Naive Bayes. We selected these classifiers as
they have been successfully applied to solve similar problems in the software
engineering domain: e.g., defect prediction [37, 53, 85] or refactoring recom-
mendation [52, 67]. These classifiers make different assumptions on the un-
derlying data, as well as having different advantages and drawbacks in terms
of execution speed and overfitting [20]. In building our approach, we deal
with two different classification scenarios: (1) a binary classification to clas-
sify a modification in one of the two categories (evolvability or functional);
(2) a multi-class classification to assign each modification to one of the four
groups (documentation, visual representation, structure, and functional). In
the multi-class classification scenario, we estimate multi-class probabilities
directly. We do not use techniques such as one-vs-one or one-vs-rest.

Feature selection: To identify relevant features for our classification problem,
we apply two different techniques: (1) Gain Ratio attribute selection [45] and
(2) Correlation-based feature selection [39]. Gain ratio attributes selection



What happens in my code reviews? 21

evaluates the importance of an attribute computing the gain ratio with re-
spect to the class. Table 6 reports the ten most relevant features in terms of
Gain Ratio to predict categories or groups, respectively. The complete list of
metrics is available in our replication package [35]. Correlation-based feature
selection measures instead the value of Pearson’s correlation between it and
the class to evaluate the importance of a feature. Table 7 shows the ten most
relevant features based on their correlation value (the complete list of values
is available in our replication package [35]).
Our analysis revealed how the number of if statements (#Added if and #if
diff ) is one of the most prominent variable in our model (at both category
and group-level). The vast majority of check and logic changes among the
functional changes in our dataset (respectively, 34.95% and 24.73% of the
functional changes) might explain the high importance of these variables in
our model. Both check and logic changes involve fixing issues with variable
checks and comparisons: e.g., adding a missing check on the variable returned
by a method.)
Variables related to the number of lines of comments are also evaluated as
particularly important (especially the number of the LOC in the new code
chunk of a modification). We argue that high number of comments LOC
might be a strong indication of a documentation change. Overall, documen-
tation changes constitute 48.33% of all the modifications in our dataset.

We test our approach using either gain ratio or correlation-based feature
selection. We notice that using correlation-based feature selection leads to
better performance. For this reason, we select this technique and we remove
the reported non-relevant features. We test different correlation thresholds to
remove non-relevant features to predict modification categories and groups.
When evaluating our model at category-level, we notice that its performance
slowly increase until a threshold of 0.005 of correlation is selected to exclude
non-relevant features. Afterwards, the performance of the model remains
stable until decreasing again for even smaller threshold. Based on these ob-
servations, we select 0.005 as our feature selection threshold at category
level. This leads us to exclude the following features from our model: method
word (corr. value 0.0044); #Round brackets diff (corr. value 0.0031); change
word (corr. value 0.0030); #Assignment diff (corr. value 0.0009); #Methods
changed (corr. value 0.0001); Brackets (corr. value 0). Concerning groups,
we apply a correlation threshold of 0.01. This leads to include almost all the
computed features in our model, with the exception of Brackets since our
analysis shows that is uncorrelated to the class variable (corr. value 0).

Data Preprocessing and Training Strategy. We consider three typical aspects
for the use of machine learning models: (1) data normalization [48], (i.e.,
the reduction of the feature space to the same interval) (2) removal of non-
relevant features [24], and (3) balancing of minority classes [50]. We use the
normalize function available in the Weka toolkit to scale data [38], while
we employed and Synthetic Minority Oversampling (SMOTE) [25] for bal-



22 Enrico Fregnan et al.

ancing the data, respectively. To implement SMOTE in our machine-learning
approach, we relied on the SMOTE class offered by the WEKA Java API.2

Afterward, we run the selected machine learning classifiers using all combi-
nations of settings (e.g., without data normalization but including feature
selection), so that we can identify the most performing solution. Moreover,
we test the performance of the models considering both within- and cross-
project strategies. In the first case, we train models only using the data of
single projects and validate their performance using the 10-fold cross vali-
dation method [7]; to mitigate the possible negative effect of random fold
splittings [87] and have a more reliable interpretation of the results, we re-
peat the validation ten times. In the second case, the data of two projects
are used to train the models, while the remaining project is used as test set;
we run the models multiple times to allow each project to be the test set
once.

Evaluation Metrics. We assess the goodness of the experimented models by
computing Precision, Recall, F-Measure, AUC-ROC, and Matthew’s Corre-
lation Coefficient (MCC) [75]. These metrics provide different perspectives
on the performance of the investigated approach.

4.2 Analysis of the results

The final manually labeled dataset contains 1,504 changes with an assigned
label. We classified 227 additional review changes, but these are borderline
cases that could not be properly assigned to a label with the available data,
thus we excluded them from the dataset to not reduce potential errors.

Table 8 shows the results achieved by the best of the experimented mod-
els in terms of F-Measure. A report on the performance of the other experi-
mented models and configurations is available in our replication package [35].
This configuration uses Random Forest to predict both the category and
group labels, normalizing the data and oversampling the minority class using
SMOTE. We kept the standard parameter settings offered by the WEKA im-
plementation of SMOTE. In particular, the default percentage parameter of
SMOTE was left to 100: This parameter specifies the percentage of SMOTE
instances the algorithm creates. To avoid introducing bias in the classifier
performance, we apply class-rebalancing with SMOTE only to the training
data and never to the test data, following the guidelines of Santos et al. [80].
The results have been computed combining the three projects in our dataset
and applying 10-fold cross validation ten times. At category level, our model
reached promising results, showing an AUC-ROC of 0.91 and MCC of 0.61.
Furthermore, the model could classify evolvability changes with a precision
and recall of 0.97 and 0.98, respectively, resulting in an F-Measure of 0.97. As
for the functional class, we achieved an F-measure of 0.63, with precision and

2 SMOTE class in the WEKA JAVA API: https://weka.sourceforge.io/doc.packages/
SMOTE/weka/filters/supervised/instance/SMOTE.html

https://weka.sourceforge.io/doc.packages/SMOTE/weka/filters/supervised/instance/SMOTE.html
https://weka.sourceforge.io/doc.packages/SMOTE/weka/filters/supervised/instance/SMOTE.html


What happens in my code reviews? 23

Table 8 Performance achieved by the three considered Machine-Learning algorithms (Naive
Bayes, J48, and Random Forest) for categories and groups using SMOTE.

Naive Bayes

Class Precision Recall F-Measure AUC MCC

Evolvability 0.99 0.12 0.21 0.66 0.09
Functional 0.08 0.99 0.14 0.66 0.09

Documentation 0.68 0.36 0.47 0.69 0.23
Visual representation 0.23 0.85 0.36 0.72 0.25
Structure 0.71 0.12 0.20 0.63 0.21
Functional 0.18 0.35 0.24 0.65 0.17

J48

Class Precision Recall F-Measure AUC MCC

Evolvability 0.96 0.97 0.97 0.83 0.54
Functional 0.60 0.53 0.57 0.83 0.54

Documentation 0.85 0.86 0.85 0.90 0.71
Visual representation 0.77 0.71 0.74 0.89 0.70
Structure 0.74 0.74 0.74 0.85 0.63
Functional 0.54 0.56 0.55 0.80 0.52

Random Forest

Class Precision Recall F-Measure AUC MCC

Evolvability 0.97 0.98 0.97 0.91 0.61
Functional 0.70 0.57 0.63 0.91 0.61

Documentation 0.88 0.89 0.88 0.95 0.77
Visual representation 0.84 0.77 0.80 0.95 0.77
Structure 0.77 0.81 0.79 0.94 0.70
Functional 0.68 0.62 0.65 0.91 0.63

recall of 0.70 and 0.57, respectively. At group level, the AUC-ROC computed
for each of the four classes was above 0.91, giving a first indication of the
feasibility of the task using the proposed model.

Considering these results, the selected features seem to be good predictors
for the types of review changes, thus suggesting that it is possible to overcome
the scalability issues of previous approaches to classify review changes.

Finding 1. The investigated approach reaches an AUC-ROC beyond
0.91, suggesting that is it possible to overcome the scalability limitations
of previous work by using supervised machine learning.

At category level, we selected a feature selection threshold of 0.005 (as
reported in Section 4.1). This value was identified as a key point in the classifier
performance: The classifier performance slowly increase until reaching this
threshold, after which they begin to decrease. Despite this, the selected value
might be considered too small and, thus, lead to overfitting. To mitigate this
risk, we explored how the performance of our classifier changed for higher
thresholds, 0.005 and 0.01, respectively. Table 9 reports the results achieved
by our classifier when these feature selection threshold are selected. We used



24 Enrico Fregnan et al.

Table 9 Performance achieved by our approach (using Random Forest and SMOTE) with
different correlation thresholds.

Class Precision Recall F-Measure AUC MCC

Threshold: 0.005

Evolvability 0.97 0.98 0.97 0.90 0.60
Functional 0.69 0.56 0.62 0.90 0.60

Threshold: 0.01

Evolvability 0.97 0.98 0.97 0.89 0.57
Functional 0.64 0.56 0.60 0.89 0.57

the best performing classifier (Random Forest with SMOTE) based on the
results reported in Table 8. Even for higher thresholds, the performance of
our approach remain stable and in-line with the previously reported results.
This, combined with the other measures taken to reduce possible overfitting,
contributes to strengthen our confidence in the reported findings. Nonetheless,
further work might be conducted to further reduce this possible bias: e.g., by
using Recursive Feature Elimination with Cross Validation (RFECV).

Despite the good overall results, we make some further observations on
the performance of the model when it classifies the functional class. Table 8
shows that this category is the most problematic. To better understand the
reasons behind this result, we conducted a further qualitative analysis. First,
the limited amount of functional changes naturally limits the capabilities of
the machine learner, as it lacks enough examples to fully learn how to classify
them [69]. Our dataset contains 6.89% of functional review changes. This is
in line with previous findings that reported how functional changes constitute
only a very low percentage of all the code changes that happen during code
review [17, 58].

Furthermore, the ‘functional’ class includes changes with very different
characteristics: indeed, a functional change might range from a missing if

statement to the modification of a whole algorithm. This large variety of
changes for one category is a further challenge for machine learning solutions.
Nevertheless, the performance achieved indicates that the features selected can
discriminate most of the functional changes in our dataset, thus representing a
promising baseline that other researchers can improve through further investi-
gations. Finally, we performed an additional analysis aimed at improving the
classification of functional changes. In particular, we assessed the suitability of
cost sensitive learning [31]: we assigned different cost weights to false positive
and negatives of functional instances, thus testing the model with different cost
matrix configurations. However, we did not achieve any significant improve-
ment, confirming that further research is required to improve the classification
of functional changes.



What happens in my code reviews? 25

Table 10 Pearson’s correlation value of the ten most relevant features to predict if a modifi-
cation belongs to the functional or structure. When a metric is computed at code chunk-level,
we specify between brackets if it is related to the new or the old code chunk in a modification.

Feature Correlation value

#Added if 0.2833
#New added 0.0748
End character (new chunk) 0.0686
#Methods added 0.0669
#Comma diff 0.0658
#New diff 0.0657
#Methods diff 0.0653
Levenshtein distance 0.0616
# Sum/difference diff 0.0606
LOCComments diff 0.0597

Finding 2. The distribution of changes in our dataset confirms find-
ings of existing literature [17, 58]. Furthermore, classifying functional
changes is challenging because of (1) their limited presence in the
dataset and (2) their large variability in their content.

Our results showed that Random Forest achieved the best performance
among the considered models. This is in line with findings of previous studies
that reported how Random Forest outperforms Naive Bayes and other decision
tree-based machine learning algorithms [36, 57]: For instance, in the field of
software engineering, Random Forest was shown to perform better than other
algorithms when used to build bug-prediction approaches [43]. Random forest
is a machine learning algorithm that builds multiple decision trees and trains
them with the ”bagging” method. Compared to a decision tree, random forest
randomly selects observations and features to create multiple trees. Then, the
final performance is computed by averaging the results of each tree. We argue
these characteristics of random forests might be what allowed it to outperform
the other models we considered in our investigation: J-48 (an implementation
of C4.5) and Naive Bayes.

To gain further insight into the differences between different groups of re-
view modifications, we investigated which features are the most relevant to
distinguish between a functional or a structure modification. To this aim, we
built a binary classifier with these two groups (functional and structure) of
modifications and excluding documentation or visual representation modifica-
tions. Then, we analyzed the importance of each feature in the model using
correlation-based feature analysis. We report the ten most relevant features in
Table 10.

The most important feature is the number of if added in a modification:
Most of the functional defects involve changes in the logic of the algorithm or
add checks on the variables. On the contrary, modifications that instantiate
new objects or remove/replace method calls are likely to belong to the struc-
ture group: e.g., modifications belonging to the “solution approach” type (a



26 Enrico Fregnan et al.

Table 11 Mean and standard deviation of #if added, #new added, and #methods added
for each of the four groups of review modifications.

Group #Added if #New added #Methods added
Mean St. dev. Mean St. dev. Mean St. dev.

Documentation 0.0196 0.1386 0.0321 0.1850 0.1747 0.3901
Visual Rep. 0.0796 0.2710 0.0696 0.2548 0.2512 0.4342
Structure 0.0729 0.2615 0.1498 0.3677 0.4942 0.5252
Functional 0.3296 0.5371 0.0824 0.2757 0.4065 0.4925

subgroup of structure modifications) often involve removing unused methods
to increase the maintainability of the code.

Finally, informed by the results of our feature importance analysis (re-
ported in Table 6 and Table 7) and by the comparison between functional and
structure modifications (whose results are illustrated in Table 10), we select
a subset of features that might be particularly relevant to highlight the dif-
ference among the four different groups of modifications. At the same time,
we aim to verify previous hypotheses formulated based on the results of the
feature importance analysis. To this aim, we selected the following three fea-
tures: #if added, #new added, and #methods added. We report in Table 11
the mean and standard deviation of these features for each group of review
modifications.

The mean of the number of added if statements (#Added if ) is signif-
icantly higher for the functional modifications compared to the other three
groups (documentation, visual represenation, and structure). This confirms
our previous hypothesis: A functional change often requires the addition of
a check on a variable and, therefore, the number of added if statements can
significantly help to distinguish between functional and evolvability changes.
Considering the amount of added new objects declarations and method calls
added, we noticed that the mean values of both these features are significantly
different when comparing documentation and visual representation changes
to structure and functional changes. Looking at only structure and functional
changes, our results still confirm our hypothesis: Structure modifications have
a higher number of added objects and methods, but the the difference with
functional modifications is not so large as originally expected.

5 RQ2.1: Evaluation of Developers’ Perceptions

To carry out an evaluation on using information on the types of review changes
as a mean to inform practitioners about their code review process and evaluate
it, we conduct semi-structured interviews involving twelve developers with
code review experience (whose characteristics are summarized in Table 12).

After verifying that is possible to automatically classifying review changes
(therefore overcoming the scalability issue of previous works [8, 17, 58]), our
aim is to understand how this information is perceived by practitioners. For
this reason, the goals of this investigation are the following: (1) collecting



What happens in my code reviews? 27

developers’ feedback on review changes classification and the potential use of
this information to support and improve code review practices, (2) conducting
a qualitative evaluation on the used taxonomy, and (3) gathering feedback on
how to display the generated review changes data. In this investigation, we
did not validate our machine learning approach. We focused instead on how
information on review changes can be effectively used and shown to reviewers.

5.1 Design and Methodology

Each interview has three parts: (1) A general discussion on code review, fo-
cusing on the interviewee’s experience; (2) a discussion on the concept of au-
tomatically classify review changes as well as the information it offers; (3) the
evaluation of the taxonomy [17]. All interviews have been conducted as semi-
structured interviews [55, 63]. Starting from the three above-mentioned general
topics, the use of semi-structured interviews allowed us to dynamically adjust
the structure of the interview to ask follow up questions when needed or ad-
dress unforeseen points of discussion raised by the participants. We employed
a set of slides to guide participants through the structure of the interview
as well as to illustrate key concepts: e.g., the review changes taxonomy. The
complete set of slides is available in our replication package [35].

In the first part, we open a discussion about interviewees overall experi-
ence with code reviews. This discussion allows us to gather participants
background experience on code reviews and set the context for the concept
testing. Afterwards, we present to participants the concept of classifying
review changes. First, we explain orally the general idea of classifying re-
view changes, then we show this information in four PowerPoint slides.
Using code review data from the QT project [4], the slides show two possible
UIs as Gerrit extensions: (1) a general overview of the changes of the entire
project, and (2) a detail view on a specific commit.

For the general overview, two alternative representations are shown in two
different slides (Figure 17 and Figure 18). The UIs differ only from the charts
used to represent the types of changes (pie-chart, histograms, etc.). We show
more than one option to display alternative representations of the same data.
Both slides show a list of the latest changes, and three charts representing
the type of the changes over time totally, and for each developer. One addi-
tional slide of the general overview shows the evolution of review changes by
developer, accessible by clicking on the developers’ name in the list of changes.
Finally, one slide shows the categorization of changes for a specific commit as
a pie-chart.

After presenting the concept of classifying review changes, we ask inter-
viewees to express their feedback on this information and how it is displayed;
they are also allowed to provide additional ideas and suggestions on what
data/information might be useful to developers (e.g., to build a tool based on
review changes data).



28 Enrico Fregnan et al.

Changes over time
FunctionalEvolvability 

Total amount of changes per type

Logic Defects

Comments

Organization 
Defects

Renaming

Visual 
Representation

Interface

Resource

Check defects

Larger defects

Duplication

Consistency

Debug Info

Other

Fig. 17 First view of a UI that leverages information on review changes. For readability
reasons, this view contains only two charts (as opposed to the three in the original slides)
and has a different layout compared to the one shown to the interview participants. The
original slides are available in our replication package [35].

Evolvability 

Oliver Twist 4,821 5,971

4,355Alice Liddel 5,138

4,682

Hari Seldon 4,658

Dorian Gray 4,068

805 2,470

2,067 792

Total

743

Developer Functional changes Evolutionary changes Total

1,150 

1,083 

1,0073,675Hermione Granger

1,678 2,980

1,3282,740

2,859

1,665

2,8596781,256

598 1,341

645 387 1,032

23,635 10,808 34,443

Jay Gatsby

James Moriarty

Hercule Poirot

John Snow

Leopold Bloom

Changes over time

EvolvabilityFunctional

Fig. 18 Second view of a UI that leverages information on review changes, as shown to the
participants during the interviews. For readability reasons, this view contains only two charts
(as opposed to the three in the original slides) and has a different layout compared to the
one shown to the interview participants. The original slides are available in our replication
package [35].



What happens in my code reviews? 29

In the third step, we discuss with the participants the review changes tax-
onomy [17]. To mitigate possible biases, we introduce the details of the tax-
onomy only in this last phase. We aim to validate if this taxonomy matches
developers’ expectations. In particular, we focus on assessing if all the types
in the taxonomy are understandable and match the interviewee’s experience.
Before starting this discussion, we show the taxonomy to the participants and
provide them with a brief explanation of each category and type. Because of
the complexity of the taxonomy, we do not introduce the changes subtypes.
To assess the taxonomy, we ask participants to place in the taxonomy each
of the changes mentioned in the first interview phase. We finally discuss how
difficult they perceive this task and whether they face any issues.

Interviews are conducted through video conference or in person and lasted
approximately from 45 minutes to one hour. However, we do not define a
strict maximum duration limit: We consider an interview concluded once all
pre-determined topics are covered and the discussion naturally comes to an
end. The study is held by one or two researchers and all interviews are recorded
and transcribed. The second researchers participated in the first interview to
ensure the goodness of the procedure. Before conducting the interviews, the
authors obtained the approval of the ethics committee of their home institu-
tion. Moreover, interviewees were asked to sign a consent form to consent to
take part to the interview. The form described the scope of the study.

To analyze the results of the interviews, we employ thematic analysis [56].
As a first step, we create codes: Brief descriptions of the content of the in-
terview to summarize an idea presented by the interviewee. Subsequently,
we identify common themes across different codes. To generate themes, we
group together codes referring to the same topic. Finally, we review the iden-
tified themes to ensure their goodness: e.g., to avoid overlaps between different
themes. The results are first analyzed by one of the authors, then checked by
a second one.

Participants. Twelve people participated in our semi-structured interviews
on review changes. They are selected through snowballing of the professional
network of the authors. Table 12 summarizes the background of the partic-
ipants involved. Their age range from 18 to 44 years, with the majority (9)
ranging from 25 to 35. The participants come from eight different countries
with three from the US, and the remaining from the Czech Republic, France,
Germany, Italy, and other European countries. Eleven participants identified
themselves as males, while one identified herself as female. Currently, nine par-
ticipants work in companies, among whom one also works as a Ph.D. student,
two also contribute to open-source projects and one studies at the university.
Two users work exclusively for open source projects, and one is a student.
Overall, our participants have an average of 11 years of coding experience and
5.3 years in code reviews (std. 4.7 and std. 2.5, respectively). On average, 7.7
years of coding experience were acquired during academic studies (std. 3) and
9 in industry (std. 8.6). Participants reported to spend, on average, 17.2 hours



30 Enrico Fregnan et al.

Table 12 Interviewees’ background (N = 12).

Part. Gender
Current
position

Coding
experience

(years)
Review

Experience
(years)Academic Industry

P1 Male
Industrial Dev.
& PhD

8 14 9

P2 Male
Industral &
O.S. Dev.

7 7 5

P3 Male Industral Dev. 6 18 9
P4 Male Industrial Dev. 7 8 5
P5 Male Industrial Dev. 13 7 6

P6 Male
Industrial Dev. &
Student

5 3 1.5

P7 Male Industrial Dev. 10 1 0.5

P8 Male
Industrial &

O.S Dev.
5 25 8

P9 Female Student 5 3 5
P10 Male O.S. Developer 8 4 4
P11 Male Researcher 14 13 7
P12 Male Industrial Dev. 5 6 4

a week doing code reviews (std. 10.2). Nine participants use code reviews tools
such as GitHub [3] and Crucible [1].

5.2 Analysis of the Results

This section overviews the main findings achieved in RQ2.1.

Information on review changes to support review. All participants found valu-
able and interesting the concept of using the information obtained by classi-
fying review changes as mean to increase the understanding of code review.
For instance, P1 stated that our proposed approach might help software
teams to improve their code review processes and understand where and
which problems are happening in the project. Similarly, P12 said that with
such features developers may be able to avoid the same errors in the future.
P3 also suggested that a tool that displays analytics on review changes might
allow companies to understand where resources have been spent. Most de-
velopers (ten) mentioned managers as the perfect suit for the information
generated by our approach; they commented that managers and CTOs could
use these data for a better understanding of the project evolution. They re-
ported how the information on the kind of review changes could be useful
to project manager or tech-leads to assess the goodness of their review prac-
tices. For instance, P3 explained that this information could reveal if the
team is paying attention to the right kind of defects. This is in line with the
findings of Bird et al. [19]: their code review analytics tool became a valuable
instrument for Microsoft developers to monitor themselves and improve their



What happens in my code reviews? 31

code review process. To increase the actionability of this information, inter-
view participants suggested to compare the distribution of review changes
in their project with benchmarks, created, for instance, by looking at simi-
lar projects or the history of the project under analysis. Eight participants
acknowledged the potential benefits of this kind of functionality.
Moreover, our participants found that showing the type of changes for each
developer may be problematic, for example creating competition [P12]. To
avoid this issue, P11 suggested limiting access to this information. Seven
participants stated that the most interesting information is the evolution of
changes over time. P4 also stated that an additional feature might allow de-
velopers to change the level of granularity (year, month, and week). P11 and
P7 suggested adding a chart, visible to the single team member, that com-
pares the developer and to an ideal standard reviewer, obtained averaging
the type of changes found by all reviewers in the project.

Finding 3. Participants found information on review changes valu-
able, especially for leads and managers.

Evaluation of the taxonomy. After the participants were briefed on Beller et
al.’s taxonomy [17] and knew the definition of each category, we asked them
to place some of the examples of review changes they mentioned during their
interview within the taxonomy. All developers were able to fully or partially
associate their changes into the various classes. During the task, all users
could see a graphical representation of the taxonomy on the screen (Figure
2). Four participants had no issues performing this task, while five had some
initial doubts on where to put a change in the taxonomy. However, they were
then able to decide before proceeding.
When asked to comment on the taxonomy, five developers stated that it
could have some overlapping issues. Three participants suggested renaming
some of the types (i.e., ‘Interface’, ‘Larger defects’) to lower confusion. De-
spite these comments, participants were able to associate most changes in
the taxonomy. Although participant P9 recognized some overlapping issues,
he stated that, overall, everything was fairly clear. Similarly, P7 found that
classes may not be mutually exclusive, but stated that the taxonomy had
enough descriptive power.

Finding 4. Despite reporting some possible overlapping issues, partic-
ipants acknowledged the descriptive power of the review changes taxon-
omy.

Overall, this evaluation phase brought positive feedback to motivate further
research on classifying review changes to support practitioners (e.g., as an
analytics tool) and improve Beller et al.’s taxonomy.



32 Enrico Fregnan et al.

5.3 Follow-up interviews

We perform follow-up interviews with 7 developers from the original inter-
views. Our goal is two-fold: (1) Assessing the concept of group, introduced in
Section 4.1, as intermediate layer in the review changes taxonomy; (2) Con-
ducting an initial evaluation of the goodness of our approach with developers.
Each interview was conducted by the first author in the form of semi-structured
interviews and lasted approximately 30 minutes. All interview were conducted
remotely. Moreover, to clarify the concepts discussed in the interviews and
show examples to the participants, we use a set of slide (an example is avail-
able in our replication package [35]). Note that in the following section, we
refer to the follow-up interviews participants with the code assigned to them
in the original interviews and reported in Table 12.

Evaluation of review changes groups: To evaluate the goodness of review
changes groups, we discuss them with developers. First of all, we introduce
again the concept of review changes as well as all the change types reported
in Beller et al.’s taxonomy [17] (reported in Figure 2). To support our ex-
planation, we show to the interviewees a slide with the taxonomy.
All of the interviewees positively assessed the reduction of the original taxon-
omy into the defined four groups. P10 reported how the reduction into groups
was based on the original taxonomy and did not arbitrarily introduced new
categories. Five participants mentioned that the level of granularity of the
classification depends on the goal of our approach. Participants agreed that
the level of information offered by our approach is enough, for instance, to
inform project managers about the kind of changes that happen in their
code review process. For instance, P1 reported how groups are appropriate
to offer an overview of the review process of a project, but a finer level of
granularity is required to make this information fully actionable.

Assessing our approach with developers: In the second part of the interviews,
we conduct an initial evaluation of the performance of our classification ap-
proach with developers. To this aim, we show in random order to each par-
ticipant 20 review changes and ask them to classify each change in one of the
four group (documentation, visual representation, structure, and functional).
To select the changes, we applied our classification approach to randomly
selected reviews in the code review history of JGit. Among the resulting
classified changes, we randomly choose five changes per group. Each par-
ticipant is asked to evaluate a different set of review changes: We do not
show the same change to multiple participants. Before asking participants
to complete this task, we discuss with them the review changes taxonomy
and introduce the concept of review change groups.
We compare the classification performed by the interview participants with
the one of our approach. Overall, developers agreed with the approach clas-
sification in 79.41% of the cases. Despite this investigation constitutes only
an initial assessment of the performance of our approach, the obtained re-
sults are encouraging. We notice that the majority of the disagreements be-



What happens in my code reviews? 33

Reviews over time Total review changes per group

Please note, that this chart uses two scales, one for functional changes (left) 
one for evolvability changes (right)

A B C

# 
Fu

nc
tio

na
l c

ha
ng

es

# 
Ev

ol
va

bi
lit

y 
ch

an
ge

s

Review changes groups over the last year

Fig. 19 General overview shown to participants. The images and charts were cropped
for readability purposes. A) Number of reviews over times. B) Total review changes per
group. C) Review changes group over time. The original report is available in the replication
package [35].

tween developers and our approach was caused by structure and functional
changes. This might be caused by the relatively similar appearance of these
two groups of changes: without having an in-depth knowledge of the project,
it is not always possibile to immediately understand if a change is impacting
the functionality of the code (therefore, being a functional change) or not.

6 RQ2.2: Evaluation with open-source projects

In RQ2.2, we verify the meaningfulness of the information on review changes on
20 open source projects. The main goal is to analyze the developers’ perception
of such data when related to their own codebase and, therefore, evaluate the
impact of automatically classifying review changes for active software projects.

6.1 Design and Structure

Design. To analyze how information obtained by automatically classifying
review changes is perceived by open-source developers, we consider 20 different
projects and send the results of the classification to developers in the form of an
online report, with some attached questions to gather feedback. We devised our
reports following a methodology similar to the one used in previous studies [94].

The target population of our investigation is represented by the main devel-
opers of each project (e.g., core developers or product owners): to give valuable
feedback on the data generated by our approach is indeed necessary to have
a high-level view and understanding of the whole code review process of the
project. The respondents are contacted by sending the link to the report to the
developers’ mailing lists or project forums, as these channels mostly attract
the interaction of core contributors [82]. Among the 20 projects (reported in



34 Enrico Fregnan et al.

Table 13 List of projects for which a report was created (N = 20) grouped by environment.

Environment Project

Android [6] Android

Eclipse [30] JGit
Eclipse platform text
Eclipse platform ui
Egit
Equinox
Etrice
JDT-core
Linuxtools
M2e
Pde
Rap
Rcptt
Scout
Sirius
Trace-compass
Tycho
Viatra

Couchbase [26] Java-client
JVM-core

Table 13), three are the initial systems used for the training of our tool (i.e.,
Android, JGit, and Java-client). The remaining projects are randomly selected
among the ones belonging to the same communities as JGit (Eclipse) and Java-
client (Couchbase). We focus on these communities because of the high review
activity of their developers. Furthermore, all the selected projects respect the
following criteria: they are mainly written in Java and use Gerrit as code
review tool.

To create the reports, we extract information on the code review history
of each project using the Java implementation of the Gerrit REST API3.
We use these data as input for our review changes classification approach
(presented in Section 4). The information returned by the devised classification
approach is used to create the graphs shown in the online reports.

Structure of the reports. In the online report, after a brief explanation
on the meaning of review changes and their selected types (i.e., evolvability,
functional, documentation, visual representation, and structure), we show de-
velopers an overview of the information collected by the designed approach,
together with one real example of each type of change extracted from their
project (see Figure 19). Below the latest commits on the Gerrit platform,
we show the general overview of the results. The overview shows the results in
three forms. One chart (Figure 19, A) represents the total number of reviews
that happened over the last year. This data is intended to give an idea of the

3 Java implementation of Gerrit API: https://github.com/uwolfer/

gerrit-rest-java-client

https://github.com/uwolfer/gerrit-rest-java-client
https://github.com/uwolfer/gerrit-rest-java-client


What happens in my code reviews? 35

amount of merged code reviews in the project. The second chart shows the to-
tal types of changes, computed over the last year, in a pie-chart (Figure 19, B).
Finally, the histograms (Figure 19, C) represent the types of review changes
that happened over the latest twelve months. Given the differences between
the number of functional and evolvability changes, the two classes are shown
in the same chart but with two different scales. Although this factor should
be evident from the data shown on the single histogram of each change, we
also inform the developers about the two different scales in the description of
the figure and with a label below the chart. Following, we show to the partic-
ipants both charts in detail (Figure 19 B and C) and ask developers to rate
the information gained for the overview and for each detailed chart. More in
detail, we ask if the figures are clear and if the information is useful for project
managers and for developers. Furthermore, participants can also indicate how
useful the entire report is, whether they perceive they learned something new
from it and if this information might have a positive influence on their code
review process.

At the end, participants can fill out background information to complete
the collection of their data. We give them the possibility of contact us in case
they were interested in knowing more details about our tool and the results
obtained for their project. The answers to all the questions, excluding the ones
requiring an extensive answer, are expressed using a Likert scale [54] ranging
from 1 (Strongly disagree) to 5 (Strongly agree). All reports are available in
our replication package [35].

6.2 Analysis of the Results

Out of the 20 reports sent, 18 developers from 10 different projects reached
back to us with feedback. 17 of them replied to our questionnaire: we received
15 complete answers and 2 partial ones. Moreover, five developers addition-
ally contacted us directly to give more extensive feedback. All respondents
except one are core developers, integrators (i.e., developers having commit-
ting/merging rights), or product owners. For this reason, we consider them a
valuable source of feedback as they are fully aware of what happens in the
code review process. The last participant declared not to be involved in the
development of the project, so we excluded their answer from our analysis.

The majority of the respondents acknowledged the novelty of the infor-
mation provided by the designed approach assigning, on average, a score of
4.2 (std. ≈0.5) to this question on a Likert scale. One developer further com-
mented on the value of this kind of data remarking that: “this provides a
concrete way to measure one of the effects of code review”. To further confirm
this aspect, some developers stated that they learned something new about
their projects. For instance, one participant reported that: “The distribution
of changes per group [is] different than expected”, while another was not aware
of the distribution of the changes over time.



36 Enrico Fregnan et al.

Moreover, we confirmed our initial hypothesis about the potential users of
review changes data. Our participants agreed that the information provided
by the overview (avg. 4.2, std. 0.5), graph B (avg. 3.9, std. 0.4), and graph C
(avg. 4.3, std. 0.4) might be particularly valuable for a project manager. One
of the developers reported that a closer look to the review process might help
management to better understand the development process. However, they
also mentioned the possibility of misuse of these data by the management. Such
a possibility was also considered by some of the participants in our concept
testing.

In contrast, and as found in RQ2.1, we obtained mild reactions when asking
if the report could have been useful for developers (e.g., avg. 3.5, std. 0.62 for
the overview). A developer further commented on this matter: “these kind of
statistics are nice for a manager, but no clue how this would influence daily
practice of an engineer?”.

Overall, developers positively assessed the value of the information shown
in the reports. This gave an initial indication of the potential usefulness of in-
formation on review changes for practitioners. However, further studies need
to be conducted to fully evaluate the usefulness of this information: e.g., in-
tegrating our classification approach into the code review pipeline of existing
projects.

Finding 5. Participants positively assessed the novelty of the informa-
tion on review changes. Furthermore, they confirmed our findings from
RQ2.1: the main target of these data are project managers, while their
importance for the developers varies.

As a further step of the investigation, we evaluated potential actions on the
review process that could be triggered by the information of our report. We
asked participants to report how the data shown could influence code review
policies, use of support tools, and reviewers assignment. However, we could
not reach any strong conclusion on this matter since we got neutral responses
(e.g., avg. 3.0, std. 1.03 for the tools use). We argue that a potential cause
of these results might be the lack of further documentation and interaction
with our visualization. For instance, one of our participants stated that they
would need more details about each category to fully grasp the potential of the
information. Similarly, another developer said that they might want to have
more background on the specific changes that were classified in each category.
In other words, developers recognized the value of the reported information
but, at the same time, require additional understanding and possibly other
data to fully benefit from it.

Finding 6. To determine the potential of review changes data, de-
velopers need more information on the metrics and the possibility to
interact with the displayed data.



What happens in my code reviews? 37

7 Discussion and Implications

Our results highlighted aspects to be further discussed.

Detecting functional defects in code review. As noticed in the context of
RQ1, most of the changes applied in code review refer to evolvability mod-
ifications rather than functional ones. This finding confirms the results re-
ported by Beller et al. [17] and further supports the research aimed at
improving static analysis tools to pinpoint potential issues in source code
[28, 41, 92, 93]. Moreover, this result suggests that developers might benefit
from the outcome of dynamic analysis methods during code review: for in-
stance, providing developers with the output of test cases may help them in
finding defects in source code.

On the value of classifying review changes. First and foremost, the results
achieved from both RQ2.1 and RQ2.2 suggest that the information coming
from the analysis of the review changes is perceived as useful for project
managers, and possibly software developers, to better understand the types
of modifications done and achieve better insights on the code review pro-
cess of the project. As such, despite our automatic approach has still some
limitations when classifying functional changes, it represents the first step
to put this kind of knowledge at the service of developers. On the one hand,
our work has implications for practitioners: They can adopt our automated
approach to improve their code review process rather than relying on time-
consuming manual classification of code changes. On the other hand, our
work contributes to the state of the art in code review research and opens
new directions for researchers, who are called to further investigate code re-
view practices and how to provide meaningful information to practitioners.

Integrate automatic review changes classification into code review. To sup-
port the retrospective analysis of the code review process, we envision our
approach to be integrated in a tool linked to the Gerrit repository of the
project, which analyses it at constant intervals. The tool will display this
information to developers and project managers. The results of RQ2.1 and
RQ2.2 allowed us to collect some preliminary requirements that such a tool
would need to fulfill. In particular, developers reported that (1) the tool
should display the evolution of this information over time (i.e., number of
changes per type in a specific time-frame), (2) the information displayed
needs to be interactive, and (3) the tool needs to provide background infor-
mation on each type of change.
Our machine-learning approach could also be employed at review-time, pos-
sibly integrated as a Gerrit plug-in, to display information on review changes
directly in the Gerrit UI. We envision to extract the changes in the code to
be reviewed, classify them, and visualize this information as warnings to the
user. Each warning will be associated to each modification (or code chunk)
to inform the user beforehand about the type of changes they will review. For



38 Enrico Fregnan et al.

both scenarios, it is fundamental that the devised tools are well-integrated
into developers’ existing work-flow, as reported by previous findings [78, 79].

Further research on review changes is needed. One of the key results of our
study relates to the use of information on review changes as an instrument
to support review practices: as stated by developers involved in RQ2.1 and
RQ2.2, the provided information represents a novelty and gives a new per-
spective on the internal mechanisms of the code review process. Moreover,
some developers commented that these data were interesting and gave them
a better idea on the types of changes on which they focus in their reviews.
However, given the limitations of a static report, it was harder for devel-
opers to evaluate the data shown and transform them into actionable im-
provements of their code quality. Given the positive results, further work
can be devoted to creating a tool that interactively displays review changes
data, and deploys it with software projects in a longitudinal study, in which
developers have the chance to test and learn how to use such a tool and get
insights.

Investigate the impact of review comments. Only approximately 33% of the
review changes in our dataset were caused by a reviewer’s comment. More-
over, the same comment might have triggered multiple changes, but using
the Gerrit API we could only link a comment to the change next to which
it was placed during the review. This further reduced the number of modi-
fications in our dataset linked to a comment. Overall, this did not allow us
to employ more complex techniques to analyse the comments. Nonetheless,
code review comments might constitute a promising source of information
to improve the performance of our classification approach. For this reason,
we believe future work should focus on the analysis of comments charac-
teristics, possibly combining them with source code characteristics using
code vectorizer techniques (e.g., code2vec). To apply this technique, a fu-
ture study should address the current two limitations of our approach: (1)
devise an approach to link a comment to all review changes that it caused
and (2) increase the amount of triggered by review changes in the dataset.

8 Threats to validity

We discuss the threats to the validity of our study and the strategies we put
in place to mitigate them.

Construct Validity. In RQ1, the validity of our analyses might have been
threatened by the correctness of the changes dataset that we created man-
ually. The classification of changes could have been negatively impacted by
the type of experience and subjectivity of the rater. To assess the extent of
this threat, we computed the joint inter-rater agreement achieving a result of
90% for the categories and 75% for the types (as explained in Section 4.1).
To further corroborate these results, we computed Krippendorff’s alpha coef-



What happens in my code reviews? 39

ficient obtaining a value of 0.447 for the categories and 0.673 for the types. As
reported in Section 4.1, the alpha coefficient for the categories reveals only a
moderate agreement between the two raters.

Krippendorff’s alpha takes into account the possibility that an agreement
is reached just by randomly assigning a label. Therefore, dataset with sig-
nificant unbalances between the number of elements per label are likely to
achieve a low alpha coefficient. Unfortunately, this is an intrinsic property of
the phenomenon under analysis: Previous research reported that the number
of evolvability changes during code review is significantly higher than the num-
ber of functional changes [17, 58]. However, the moderate agreement reached
computing Krippendorff’s alpha might still constitute a threat to the goodness
of our dataset.

Another potential threat is related to the selection of the independent
variables used to build our automated approach. We exploited a set of well-
know features presented in previous work and covering different aspects of
source code quality, understandability, and textual coherence [23, 59, 66]. We
cannot rule out that other metrics, not considered in the study, could provide
additional contributions to the performance of the machine learning model.

In this study, we devised our own linking approach to connect related
code chunks. However, other approaches (e.g., the one offered by java-diff-
utils4) might have been valid alternatives. The use of a different approach
might modify the performance of our classification approach. Future work can
investigate this further.

To conduct semi-structured interviews in the context of RQ2.1, we first
produced a field guide following well-established guidelines [73] to maximize
the rigor of the study. Nevertheless, during their execution, interviewees may
provide insights in different manners, e.g., by answering certain predefined
questions while discussing others. For this reason, we adapted the interview
schema based on the discussions we had with developers; at the same time, we
made sure that all the predefined questions were addressed and asked further
opinions in case these were not clear enough.

Conclusion Validity. In RQ1, a first threat is related to the interpreta-
tion of the performance achieved by the approach. We mitigated this problem
by considering more than one evaluation metric (e.g., F-measure, AUC-ROC,
and MCC). Also concerning RQ1, previous work has shown the importance
of considering data pre-processing actions to properly set machine learning
models [40, 69, 86, 88]. For this reason, in our research we considered the
application of techniques to deal with data normalization, feature selection,
data balancing, and hyper-parameters configuration. In addition, the valida-
tion strategy may be object of discussion: according to a recent paper [87], the
10-fold cross-validation may bias the interpretation of the results, as it relies
on random splitting of the data used to train and test the model. To mitigate
the effect of randomness, we repeated the validation ten times and reported
the mean performance coming from running the model multiple times.

4 https://github.com/java-diff-utils/java-diff-utils



40 Enrico Fregnan et al.

Our dataset of review changes presents a significant unbalance between the
number of evolvability and functional changes. This reflects the ratio of these
two categories of changes in real world code reviews [17, 58]. Nonetheless, this
unbalance in our data increases the risk for our model to suffer from overfitting.
To mitigate this bias, we applied the following techniques: (1) We performed
features selection, evaluating the contribution of each feature both in terms
of gain ratio and Pearson’s correlation with the class to be predicted; (2) We
oversampled the minority class using SMOTE, applying it only on the training
set and never on the test set (following the best practices reported by Santos
et al. [80]); (3) We evaluated the performance of our model using 10-times
10-fold cross validation; (4) We tested our model using random forest, whose
bagging feature reduces the chance of overfitting.

Code review is a process conducted in chronological order. The chrono-
logical nature of code review might have an effect on the performance of our
classifier. We believe this is not a concern in our investigation since we do not
rely on metrics that might be impacted by the chronological nature of code
review and we treat each review modification independently. Nonetheless, we
test the possible effect of the chronological order by comparing the perfor-
mance achieved by our approach when evaluated using leave-one-out and us-
ing “chronological-ordered leave-one-out”. In the first approach, we iteratively
use each modification in our dataset as a test set and train the model using all
other modifications. We randomize the modifications in our dataset to control
for any chronological effect on the performance. In the “chronological-ordered
leave-one-out” approach, we ordered each modification using the timestamp
associated to the revision from which it was extracted. We begin our evalu-
ation by using half of the ordered modifications as training set and the next
ordered modification as test set. Then, we add this modification to the train-
ing set and we select the next one as test set. We proceed iteratively until no
modifications are left. Comparing the performance of the two approaches, we
do not notice any significant difference. This result seems to confirm that the
performance of our classifier is not influenced by the temporal nature of code
review.

In RQ2.1 to reduce the subjectivity of the evaluation of the interview data,
first one of the authors did the analysis, then a second double-checked the re-
sults. In RQ2.2, we assessed the developers’ opinions on the generated report
by also relying on open questions. To reduce subjectivity, two authors con-
ducted the analysis of the answers.

External Validity. Concerning the generalizability of the results, our study
considers three open-source projects. Although we considered projects that
(1) come from different domains, (2) have different size as well as number
of contributors, and (3) have a different organization structure, we cannot
confirm that the results we achieved with our automated approach will hold in
other systems, for example using other programming languages and in a closed-
source setting. In the context of RQ2.1, only one female developer participated
in the semi-structured interviews. Previous works found that gender might



What happens in my code reviews? 41

influence how people approach the solution of problems [16, 22]. Therefore, we
can not completely exclude that this factor might have influenced the collected
answers.

Participants’ answers in RQ2.1 might have been influenced by moderator
acceptance bias. To mitigate this issue, we emphasized to participants the pre-
liminary nature of our investigation: Our aim was not to collect information
on a tool we created but simply to understand the potential use and impor-
tance of information on review changes. Participants were not made aware of
the approach developed in the context of our RQ1. Moreover, we clarified to
the interviewees how the tool UI views shown in the interview slides were only
meant as examples of applications of this kind of information in practice and
did not represent the UI of an existing tool.

We received 17 answers when inquiring developers in RQ2.2. In this respect,
we targeted original developers with the aim of gathering insights from people
who are expert in the code review processes analyzed. As such, the audience
of our study was limited by nature.

9 Conclusion

We presented a study that evaluates the classification of review changes as a
mean to support developers. The study first addresses the scalability issues of
previously proposed approaches, caused by their manual nature, investigating
and evaluating a machine learning-based technique capable of automatically
classifying review changes. To achieve this goal, the designed approach works
using changes types and categories, based on the taxonomy proposed by pre-
vious studies [17, 44, 58]. Our best configuration achieved an AUC-ROC of
0.91 in classifying the changes categories (evolvability and functional) and an
AUC-ROC between 0.91 and 0.95 for the detection of the four changes groups,
obtained further refining the two main categories.

Then, we explored the use of information on review changes with twelve de-
velopers using semi-structured interviews. Participants provided positive feed-
back and ideas for refinement, confirming the goodness of our investigation
and opening interesting directions for future work.

Finally, the relevance of review changes data for practitioners was evaluated
by generating reports for 20 different open source projects, which were assessed
by 17 core developers. The answers to our report confirmed the novelty of
the displayed information on review changes: the respondents declared of not
being aware of any tool providing the same information. Furthermore, they
confirmed managers as the main potential target.

Overall, the results of our investigation give clear indication that using
information on review changes to assess and improve current review practices
is feasible and well perceived by developers.



42 Enrico Fregnan et al.

Acknowledgment

The authors would like to thank the anonymous reviewers for their thoughtful
and important comments and gratefully acknowledge the support of the Swiss
National Science Foundation through the SNF Projects No. PP00P2 170529.

References

1. Crucible official website. https://www.atlassian.com/software/

crucible, 2019.
2. Gerrit Code Review. https://www.gerritcodereview.com, 2019.
3. GitHub official website. https://github.com, 2019.
4. About qt. https://wiki.qt.io/About_Qt, 2019.
5. U. Abelein and B. Paech. Understanding the influence of user participation

and involvement on system success–a systematic mapping study. Empirical
Software Engineering, 20(1):28–81, 2015.

6. Android. Android gerrit online repository. https://git.eclipse.org/

r/q/status:open+-is:wip, August 2020.
7. S. Arlot, A. Celisse, et al. A survey of cross-validation procedures for

model selection. Statistics surveys, 4:40–79, 2010.
8. A. Bacchelli and C. Bird. Expectations, outcomes, and challenges of

modern code review. In Proceedings of the 2013 International Con-
ference on Software Engineering, ICSE ’13, pages 712–721, Piscataway,
NJ, USA, 2013. IEEE Press. ISBN 978-1-4673-3076-3. URL https:

//doi.org/10.1109/ICSE.2013.6606617.
9. R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern information retrieval,

volume 463. ACM press New York, 1999.
10. T. Ball, J.-M. Kim, A. A. Porter, and H. P. Siy. If your version control

system could talk. In ICSE Workshop on Process Modelling and Empirical
Studies of Software Engineering, volume 11, 1997.

11. T. Baum, O. Liskin, K. Niklas, and K. Schneider. A faceted classifica-
tion scheme for change-based industrial code review processes. In 2016
IEEE International Conference on Software Quality, Reliability and Secu-
rity (QRS), pages 74–85, Aug 2016. doi: 10.1109/QRS.2016.19.

12. T. Baum, H. Leßmann, and K. Schneider. The choice of code review
process: A survey on the state of the practice. In Product-Focused Software
Process Improvement, pages 111–127, Cham, 2017. Springer International
Publishing. ISBN 978-3-319-69926-4.

13. T. Baum, K. Schneider, and A. Bacchelli. Associating working memory
capacity and code change ordering with code review performance. Empir-
ical Software Engineering, pages 1–37, 2019. URL https://doi.org/10.

1007/s10664-018-9676-8.
14. G. Bavota and B. Russo. Four eyes are better than two: On the impact of

code reviews on software quality. In 2015 IEEE International Conference

https://www.atlassian.com/software/crucible
https://www.atlassian.com/software/crucible
https://www.gerritcodereview.com
https://github.com
https://wiki.qt.io/About_Qt
https://git.eclipse.org/r/q/status:open+-is:wip
https://git.eclipse.org/r/q/status:open+-is:wip
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1007/s10664-018-9676-8
https://doi.org/10.1007/s10664-018-9676-8


What happens in my code reviews? 43

on Software Maintenance and Evolution (ICSME), pages 81–90. IEEE,
2015.

15. O. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey. Investigat-
ing technical and non-technical factors influencing modern code review.
Empirical Software Engineering, 21(3):932–959, 2016.

16. L. Beckwith, C. Kissinger, M. Burnett, S. Wiedenbeck, J. Lawrance,
A. Blackwell, and C. Cook. Tinkering and gender in end-user program-
mers’ debugging. In Proceedings of the SIGCHI conference on Human
Factors in computing systems, pages 231–240, 2006.

17. M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens. Modern code
reviews in open-source projects: Which problems do they fix? In Pro-
ceedings of the 11th Working Conference on Mining Software Reposi-
tories, MSR 2014, pages 202–211, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-2863-0. doi: 10.1145/2597073.2597082. URL http:

//doi.acm.org/10.1145/2597073.2597082.
18. N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zim-

mermann. What makes a good bug report? In Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of software en-
gineering, pages 308–318, 2008.

19. C. Bird, T. Carnahan, and M. Greiler. Lessons learned from building
and deploying a code review analytics platform. In 2015 IEEE/ACM
12th Working Conference on Mining Software Repositories, pages 191–
201. IEEE, 2015.

20. C. M. Bishop. Pattern recognition and machine learning. springer, 2006.
21. A. Bosu and J. C. Carver. Impact of developer reputation on code review

outcomes in oss projects: An empirical investigation. In Proceedings of the
8th ACM/IEEE international symposium on empirical software engineer-
ing and measurement, page 33. ACM, 2014.

22. M. M. Burnett, L. Beckwith, S. Wiedenbeck, S. D. Fleming, J. Cao, T. H.
Park, V. Grigoreanu, and K. Rector. Gender pluralism in problem-solving
software. Interacting with computers, 23(5):450–460, 2011.

23. R. P. L. Buse and W. R. Weimer. Learning a metric for code readability.
IEEE Transactions on Software Engineering, 36(4):546–558, July 2010.
ISSN 0098-5589. doi: 10.1109/TSE.2009.70. URL http://dx.doi.org/

10.1109/TSE.2009.70.
24. G. Chandrashekar and F. Sahin. A survey on feature selection methods.

Computers & Electrical Engineering, 40(1):16–28, 2014.
25. N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote:

synthetic minority over-sampling technique. Journal of artificial intelli-
gence research, 16:321–357, 2002.

26. Couchbase. Couchbase gerrit online repository. http://review.

couchbase.org/q/status:open, August 2020.
27. J. Czerwonka, M. Greiler, and J. Tilford. Code reviews do not find bugs:

how the current code review best practice slows us down. In Proceedings
of the 37th International Conference on Software Engineering-Volume 2,
pages 27–28. IEEE Press, 2015.

http://doi.acm.org/10.1145/2597073.2597082
http://doi.acm.org/10.1145/2597073.2597082
http://dx.doi.org/10.1109/TSE.2009.70
http://dx.doi.org/10.1109/TSE.2009.70
http://review.couchbase.org/q/status:open
http://review.couchbase.org/q/status:open


44 Enrico Fregnan et al.

28. M. Di Penta, L. Cerulo, and L. Aversano. The life and death of statically
detected vulnerabilities: An empirical study. Information and Software
Technology, 51(10):1469–1484, 2009.

29. P. M. Domingos. A few useful things to know about machine learning.
Commun. acm, 55(10):78–87, 2012.

30. Eclipse. Eclipse gerrit online repository. https://git.eclipse.org/r/

q/status:open+-is:wip, August 2020.
31. C. Elkan. The foundations of cost-sensitive learning. In International joint

conference on artificial intelligence, volume 17, pages 973–978. Lawrence
Erlbaum Associates Ltd, 2001.

32. M. Fagan. Design and code inspections to reduce errors in program de-
velopment. In Software pioneers, pages 575–607. Springer, 2002.

33. A. Fink. How to design survey studies. Sage, 2003.
34. B. Fluri, M. Wuersch, M. Pinzger, and H. Gall. Change distilling: Tree

differencing for fine-grained source code change extraction. IEEE Trans-
actions on software engineering, 33(11):725–743, 2007.

35. E. Fregnan, F. Petrulio, L. Di Geronimo, and A. Bacchelli. What happens
in my code reviews? replication package. https://doi.org/10.5281/

zenodo.5592254, 2020.
36. W. Gata, G. Grand, R. Fatmasari, B. Baharuddin, Y. E. Patras, R. Hi-

dayat, S. Tohari, and N. K. Wardhani. Prediction of teachers’ lateness fac-
tors coming to school using c4. 5, random tree, random forest algorithm.
In 2nd International Conference on Research of Educational Administra-
tion and Management (ICREAM 2018), pages 161–166. Atlantis Press,
2019.

37. E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall. Method-level bug
prediction. In Proceedings of the 2012 ACM-IEEE International Sympo-
sium on Empirical Software Engineering and Measurement, pages 171–
180. IEEE, 2012.

38. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten. The weka data mining software: an update. ACM SIGKDD
explorations newsletter, 11(1):10–18, 2009.

39. M. A. Hall. Correlation-based feature selection for machine learning. 1999.
40. J. Jiarpakdee, C. Tantithamthavorn, and A. E. Hassan. The impact of cor-

related metrics on the interpretation of defect models. IEEE Transactions
on Software Engineering, 2019.

41. B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge. Why don’t soft-
ware developers use static analysis tools to find bugs? In Proceedings of
the 2013 International Conference on Software Engineering, pages 672–
681. IEEE Press, 2013.

42. R. B. Johnson and A. J. Onwuegbuzie. Mixed methods research: A re-
search paradigm whose time has come. Educational researcher, 33(7):
14–26, 2004.

43. Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto, B. Adams, and
A. E. Hassan. Revisiting common bug prediction findings using effort-
aware models. In 2010 IEEE international conference on software main-

https://git.eclipse.org/r/q/status:open+-is:wip
https://git.eclipse.org/r/q/status:open+-is:wip
https://doi.org/10.5281/zenodo.5592254
https://doi.org/10.5281/zenodo.5592254


What happens in my code reviews? 45

tenance, pages 1–10. IEEE, 2010.
44. C. Kaner, J. Falk, and H. Q. Nguyen. Testing Computer Software Second

Edition. Dreamtech Press, 2000.
45. A. G. Karegowda, A. Manjunath, and M. Jayaram. Comparative study

of attribute selection using gain ratio and correlation based feature se-
lection. International Journal of Information Technology and Knowledge
Management, 2(2):271–277, 2010.

46. C. F. Kemerer and M. C. Paulk. The impact of design and code reviews on
software quality: An empirical study based on psp data. IEEE transactions
on software engineering, 35(4):534–550, 2009.

47. O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and M. W. Godfrey. Inves-
tigating code review quality: Do people and participation matter? In 2015
IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 111–120, Sep. 2015. doi: 10.1109/ICSM.2015.7332457.

48. S. Kotsiantis, D. Kanellopoulos, and P. Pintelas. Data preprocessing for
supervised leaning. International Journal of Computer Science, 1(2):111–
117, 2006.

49. V. Kovalenko, N. Tintarev, E. Pasynkov, C. Bird, and A. Bacchelli. Does
reviewer recommendation help developers? IEEE Transactions on Soft-
ware Engineering, 46(7):710–731, 2020. URL https://doi.org/10.1109/

TSE.2018.2868367.
50. B. Krawczyk. Learning from imbalanced data: open challenges and future

directions. Progress in Artificial Intelligence, 5(4):221–232, 2016.
51. K. Krippendorff. Computing krippendorff’s alpha-reliability. 2011.
52. L. Kumar, S. M. Satapathy, and L. B. Murthy. Method level refactoring

prediction on five open source java projects using machine learning tech-
niques. In Proceedings of the 12th Innovations on Software Engineering
Conference (formerly known as India Software Engineering Conference),
pages 1–10, 2019.

53. S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Benchmarking clas-
sification models for software defect prediction: A proposed framework
and novel findings. IEEE Transactions on Software Engineering, 34(4):
485–496, 2008.

54. R. Likert. A technique for the measurement of attitudes. Archives of
psychology, 1932.

55. R. Longhurst. Semi-structured interviews and focus groups. Key methods
in geography, 3:143–156, 2003.

56. E. E. Lyons and A. E. Coyle. Analysing qualitative data in psychology.
Sage Publications Ltd, 2007.

57. T. Mahboob, S. Irfan, and A. Karamat. A machine learning approach
for student assessment in e-learning using quinlan’s c4. 5, naive bayes
and random forest algorithms. In 2016 19th International Multi-Topic
Conference (INMIC), pages 1–8. IEEE, 2016.

58. M. V. Mäntylä and C. Lassenius. What types of defects are really discov-
ered in code reviews? IEEE Transactions on Software Engineering, 35(3):
430–448, May 2009. ISSN 0098-5589. doi: 10.1109/TSE.2008.71.

https://doi.org/10.1109/TSE.2018.2868367
https://doi.org/10.1109/TSE.2018.2868367


46 Enrico Fregnan et al.

59. T. J. McCabe. A complexity measure. IEEE Transactions on software
Engineering, (4):308–320, 1976.

60. S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan. The impact of code
review coverage and code review participation on software quality: A case
study of the qt, vtk, and itk projects. In Proceedings of the 11th Working
Conference on Mining Software Repositories, pages 192–201. ACM, 2014.

61. S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan. An empirical study
of the impact of modern code review practices on software quality. Em-
pirical Software Engineering, 21(5):2146–2189, 2016.

62. R. Morales, S. McIntosh, and F. Khomh. Do code review practices impact
design quality? a case study of the qt, vtk, and itk projects. In 2015
IEEE 22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), pages 171–180. IEEE, 2015.

63. K. E. Newcomer, H. P. Hatry, and J. S. Wholey. Conducting semi-
structured interviews. Handbook of practical program evaluation, 492,
2015.

64. A. Ouni, R. G. Kula, and K. Inoue. Search-based peer reviewers recom-
mendation in modern code review. In 2016 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pages 367–377. IEEE,
2016.

65. M. Paixao, J. Krinke, D. Han, and M. Harman. Crop: Linking code re-
views to source code changes. In 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR), pages 46–49, May
2018.

66. F. Palomba, A. Panichella, A. De Lucia, R. Oliveto, and A. Zaidman. A
textual-based technique for smell detection. In 2016 IEEE 24th Interna-
tional Conference on Program Comprehension (ICPC), pages 1–10, May
2016. doi: 10.1109/ICPC.2016.7503704.

67. J. Pantiuchina, G. Bavota, M. Tufano, and D. Poshyvanyk. Towards just-
in-time refactoring recommenders. In 2018 IEEE/ACM 26th International
Conference on Program Comprehension (ICPC), pages 312–3123. IEEE,
2018.

68. L. Pascarella, D. Spadini, F. Palomba, M. Bruntink, and A. Bacchelli.
Information needs in contemporary code review. Proc. ACM Hum.-
Comput. Interact., 2(CSCW):135:1–135:27, Nov. 2018. ISSN 2573-0142.
doi: 10.1145/3274404. URL http://doi.acm.org/10.1145/3274404.

69. F. Pecorelli, F. Palomba, D. Di Nucci, and A. De Lucia. Comparing
heuristic and machine learning approaches for metric-based code smell
detection. In Proceedings of the 27th International Conference on Program
Comprehension, pages 93–104. IEEE Press, 2019.

70. A. Porter, H. Siy, and L. Votta. A review of software inspections.
volume 42 of Advances in Computers, pages 39 – 76. Elsevier, 1996.
doi: https://doi.org/10.1016/S0065-2458(08)60484-2. URL http://www.

sciencedirect.com/science/article/pii/S0065245808604842.
71. A. Porter, H. Siy, A. Mockus, and L. Votta. Understanding the sources

of variation in software inspections. ACM Transactions on Software En-

http://doi.acm.org/10.1145/3274404
http://www.sciencedirect.com/science/article/pii/S0065245808604842
http://www.sciencedirect.com/science/article/pii/S0065245808604842


What happens in my code reviews? 47

gineering and Methodology (TOSEM), 7(1):41–79, 1998.
72. M. F. Porter. Readings in information retrieval. chapter An Algorithm for

Suffix Stripping, pages 313–316. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1997. ISBN 1-55860-454-5. URL http://dl.acm.

org/citation.cfm?id=275537.275705.
73. S. Portigal. Interviewing users: how to uncover compelling insights. Rosen-

feld Media, 2013.
74. A. Ram, A. A. Sawant, M. Castelluccio, and A. Bacchelli. What makes a

code change easier to review: An empirical investigation on code change
reviewability. In Proceedings of the 2018 26th ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering, ESEC/FSE 2018, pages 201–212, New York,
NY, USA, 2018. ACM. ISBN 978-1-4503-5573-5. doi: 10.1145/3236024.
3236080. URL http://doi.acm.org/10.1145/3236024.3236080.

75. Y. Reich and S. Barai. Evaluating machine learning models for engineering
problems. Artificial Intelligence in Engineering, 13(3):257–272, 1999.

76. P. C. Rigby and C. Bird. Convergent contemporary software peer review
practices. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, pages 202–212. ACM, 2013.

77. P. C. Rigby, D. M. German, L. Cowen, and M.-A. Storey. Peer review on
open-source software projects: Parameters, statistical models, and theory.
ACM Transactions on Software Engineering and Methodology (TOSEM),
23(4):35, 2014.

78. C. Sadowski, J. Van Gogh, C. Jaspan, E. Soderberg, and C. Winter. Tri-
corder: Building a program analysis ecosystem. In 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, volume 1, pages
598–608. IEEE, 2015.

79. C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and C. Jaspan.
Lessons from building static analysis tools at google. Communications of
the ACM, 61(4):58–66, 2018.

80. M. S. Santos, J. P. Soares, P. H. Abreu, H. Araujo, and J. Santos. Cross-
validation for imbalanced datasets: Avoiding overoptimistic and overfitting
approaches [research frontier]. IEEE Computational intelligence magazine,
13(4):59–76, 2018.

81. C. Sauer, D. R. Jeffery, L. Land, and P. Yetton. The effectiveness of soft-
ware development technical reviews: A behaviorally motivated program of
research. IEEE Transactions on Software Engineering, 26(1):1–14, 2000.

82. B. Shibuya and T. Tamai. Understanding the process of participating
in open source communities. In Proceedings of the 2009 ICSE Workshop
on Emerging Trends in Free/Libre/Open Source Software Research and
Development, pages 1–6. IEEE Computer Society, 2009.

83. D. Spadini, M. Aniche, M.-A. Storey, M. Bruntink, and A. Bacchelli.
When testing meets code review: Why and how developers review tests. In
2018 IEEE/ACM 40th International Conference on Software Engineering
(ICSE), pages 677–687. IEEE, 2018. URL https://doi.org/10.1145/

3180155.3180192.

http://dl.acm.org/citation.cfm?id=275537.275705
http://dl.acm.org/citation.cfm?id=275537.275705
http://doi.acm.org/10.1145/3236024.3236080
https://doi.org/10.1145/3180155.3180192
https://doi.org/10.1145/3180155.3180192


48 Enrico Fregnan et al.

84. D. Spadini, F. Palomba, T. Baum, S. Hanenberg, M. Bruntink, and A. Bac-
chelli. Test-driven code review: an empirical study. In Proceedings of the
41st International Conference on Software Engineering, pages 1061–1072.
IEEE Press, 2019. URL https://doi.org/10.1109/ICSE.2019.00110.

85. S. Strüder, M. Mukelabai, D. Strüber, and T. Berger. Feature-oriented
defect prediction. In Proceedings of the 24th ACM Conference on Systems
and Software Product Line: Volume A-Volume A, pages 1–12, 2020.

86. C. Tantithamthavorn and A. E. Hassan. An experience report on defect
modelling in practice: Pitfalls and challenges. In Proceedings of the 40th
International Conference on Software Engineering: Software Engineering
in Practice, pages 286–295. ACM, 2018.

87. C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto. An
empirical comparison of model validation techniques for defect prediction
models. IEEE Transactions on Software Engineering, 43(1):1–18, 2016.

88. C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto. The
impact of automated parameter optimization on defect prediction models.
IEEE Transactions on Software Engineering, 2018.

89. P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida. Investigating
code review practices in defective files: An empirical study of the qt sys-
tem. In Proceedings of the 12th Working Conference on Mining Software
Repositories, pages 168–179. IEEE Press, 2015.

90. P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida,
and K.-i. Matsumoto. Who should review my code? a file location-based
code-reviewer recommendation approach for modern code review. In 2015
IEEE 22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), pages 141–150. IEEE, 2015.

91. P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida. Revisiting
code ownership and its relationship with software quality in the scope of
modern code review. In Proceedings of the 38th international conference
on software engineering, pages 1039–1050. ACM, 2016.

92. C. Vassallo, S. Panichella, F. Palomba, S. Proksch, A. Zaidman, and
H. C. Gall. Context is king: The developer perspective on the usage of
static analysis tools. In 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pages 38–49.
IEEE, 2018.

93. C. Vassallo, S. Panichella, F. Palomba, S. Proksch, H. C. Gall, and A. Zaid-
man. How developers engage with static analysis tools in different con-
texts. Empirical Software Engineering, 2019.

94. C. Vassallo, S. Proksch, H. C. Gall, and M. Di Penta. Automated reporting
of anti-patterns and decay in continuous integration. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE), pages
105–115. IEEE, 2019.

95. K. Wiegers. Peer Reviews in Software: A Practical Guide. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002. ISBN 0-201-
73485-0.

https://doi.org/10.1109/ICSE.2019.00110


What happens in my code reviews? 49

96. T. Wolf, A. Schroter, D. Damian, and T. Nguyen. Predicting build failures
using social network analysis on developer communication. In 2009 IEEE
31st International Conference on Software Engineering, pages 1–11. IEEE,
2009.

97. L. Yujian and L. Bo. A normalized levenshtein distance metric. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 29(6):1091–
1095, June 2007. ISSN 0162-8828. doi: 10.1109/TPAMI.2007.1078.

98. M. B. Zanjani, H. Kagdi, and C. Bird. Automatically recommending peer
reviewers in modern code review. IEEE Transactions on Software Engi-
neering, 42(6):530–543, 2015.


	Introduction
	Background and Related Work
	Research Questions
	RQ1: Classifying Types of Review Changes
	RQ2.1: Evaluation of Developers' Perceptions
	RQ2.2: Evaluation with open-source projects
	Discussion and Implications
	Threats to validity
	Conclusion

