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ABSTRACT
Context: Code review is a fundamental, yet expensive part of soft-
ware engineering. Therefore, research on understanding code re-
view and its efficiency and performance is paramount.
Objective: We aim to test the effect of a guidance approach on
review effectiveness and efficiency. This effect is expected to work
by lowering the cognitive load of the task; thus, we analyze the
mediation relationship as well.
Method: To investigate this effect, we employ an experimental de-
sign where professional developers have to perform three code
reviews. We use three conditions: no guidance, a checklist, and
a checklist-based review strategy. Furthermore, we measure the
reviewers’ cognitive load.
Limitations: The main limitations of this study concern the specific
cohort of participants, the mono-operation bias for the guidance
conditions, and the generalizability to other changes and defects.
Full registered report: https://doi.org/10.17605/OSF.IO/5FPTJ;
Materials: https://doi.org/10.6084/m9.figshare.11806656
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1 INTRODUCTION
Code review is a widespread software engineering practice in
which one or multiple reviewers inspect a code change written
by a peer [1, 23] with the primary goal of improving software
quality [3]. Performing a good code review is an expensive and
time-consuming task [11]. Therefore, research is investigating how
to improve code review efficiency and performance.

With this aim, researchers have developed many reading tech-
niques to guide developers in reviewing code [15]. One of the guid-
ance techniques commonly used in the industry is checklist-based
reading [2, 8, 27]. A checklist guides a reviewer in what to look for.

Further guidance might be possible by telling a reviewer how
to review. Providing a specific strategy to perform a development
task has been proven to be helpful not only with scenario-based
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reading techniques for code inspection [2], but also in debugging
or test-driven development [16, 20].

Checklists and strategies assist developers in performing com-
plex tasks by systematizing their activity, thus lowering the cogni-
tive load of reviewers [17, 20]. The result should be a more effective
and efficient review.

In this experiment, we investigate the effect of guidance ap-
proaches on reviewing code. We compare three treatment groups –
no guidance, checklist, and strategic checklist execution (strategy).
If we can confirm that a guided approach helps developers identify
defects or make review tasks easier, not only “static" checklists,
but also explicit reviewing strategies should be incorporated into
review tools and used to train reviewers.

2 RESEARCH QUESTIONS
Ourmain goal is to investigate whether guidance on how to perform
a review (strategy) provides additional benefits compared to guid-
ance on what to look for in the review (checklist). A good review
performance not only means finding many of the contained defects
(effectiveness) but also finding them quickly (efficiency) [6]. We
include not having any guidance as an additional control. Therefore,
we ask:

RQ1: Does guidance in review lead to:
RQ1.1: a higher review effectiveness (share of functional
defects found)?

RQ1.2: a higher review efficiency (functional defects
found over the review time)?

We formalize our research question in the following hypotheses:

H1.1: there are significant differences in review effectiveness be-
tween checklist, strategy, and no guidance approach.
H01.1: there are no significant differences in review effectiveness
between checklist, strategy, and no guidance approach.

H1.2: there are significant differences in review efficiency between
checklist, strategy, and no guidance approach.
H01.2: there are no significant differences in review efficiency be-
tween checklist, strategy, and no guidance approach.

Both guidance approaches (checklist and strategy) systematize
the activity of the reviewers by reducing the amount of informa-
tion to keep in mind at a given time, thus, supposedly lowering
developers’ cognitive load [20, 25]. Therefore, we investigate:

RQ2: Is the effect of guidance on code review mediated by a
lower cognitive load?

We formalize our research question in the following hypotheses:
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H2.1: Cognitive load significantly mediates the relationship be-
tween the guidance approach and review effectiveness.
H02.1: Cognitive load does not significantly mediate the relation-
ship between the guidance approach and review effectiveness.

H2.2: Cognitive load significantly mediates the relationship be-
tween the guidance approach and review efficiency.
H02.2: Cognitive load does not significantly mediate the relation-
ship between the guidance approach and review efficiency.

3 RESEARCH PROTOCOL
For RQ1, we use a randomized controlled experiment design with
three groups. We setup RQ2 as a correlational study; studies in-
vestigating mediators in experimental design manipulate the in-
dependent variable and the mediator is “only” measured like in
observational studies (measurement-of-mediation design [29]).

3.1 Variables
Table 1 presents the study’s variables. The guidance approach being
used is the independent variable for both RQ1 and RQ2. A central
dependent variable for RQ1 and RQ2 is the number of functional
defects found by the participants. In RQ2, cognitive load is used
as the mediator variable. Furthermore, we measure participants’
demographic data (e.g., Java experience), reported in Table 1, to
control for potential correlation with the review performance. We
employ the following treatments (guidance approaches):

No Guidance. The first group of developers does not receive any
aid in the review and perform the review as they are used to.

Checklist. The second group is presented with a checklist (see Sec-
tion 3.2). They are required to identify defects using this checklist,
but also any other defects that might appear.

Strategy. Inspired by formerly developed strategies [18, 20], we
apply the same principles in our implementation of a checklist-
based reviewing strategy. While a developer has the best potential
to retrieve complex information and consequently make contextu-
alized decisions, the tool-supported strategy can free their mental
capacity to do these tasks by aiding systematic execution of steps
and storing and providing relevant information when needed [20].
Our strategy builds on the “static" checklist and enforces a tool-
supported process on the reviewers. Furthering the checklist’s
purpose – to guide the review and take the mental load off de-
velopers, the strategy iterates for a developer through individual
pieces of the change, displaying the checklist items relevant to
the piece at the general, class, and methods levels.
The strategy is implemented as a top bar in the review task in-
terface. It displays the same items as the checklist, grouped by
scope. Differently from the checklist, items are not shown all at
the same time, but participants are explicitly asked first to check
the general items, then the class, then the method ones.We display
only the items that are meaningful for the selected code chunk.
Furthermore, the strategy highlights the code chunk(s) the user
is currently reviewing. The user must explicitly mark the items
as checked before being able to proceed to the next item(s) in the
review strategy.

3.2 Material
The following section introduces the material we plan to use in this
study; this material is publicly available [30].

Experiment UI. We employ a web-based tool that participants
use to complete the experiment remotely. We log participants’
answers, environment, and UI interactions. The tool was built for
our previous work and we modified it according to the new ex-
periment’s requirements and past experience [5]. Figure 1 shows
a partial view of the checklist implementation in the web-based
experiment UI; a complete view is available in our online appendix
[30].

Checklist. The checklist is developed based on recommendations
in the literature and Microsoft checklists [24]. According to the
literature, a good checklist requires a specific answer for each item,
separates items by topic, and focuses on relevant issues [9, 12, 17];
Checklists should specify the scope in which items should be
checked (e.g., “for each method/class") to prevent developers from
memorizing big portions of code and jumping through it [17].
Following these recommendations, we created a tentative version
of the checklist.
For each seeded defect, the final checklist contains at least one
item that helps to find the issue but does not give obvious clues
about the type or location of the defects. To assess its face validity,
we contacted three Java developers with experience in code review.
Based on their feedback, we improved the items in our checklist.
Then, we repeated this process with other three developers.

Cognitive Load Questionnaire. To measure cognitive load, we
used a standardized questionnaire (StuMMBE-Q) [19]. It captures
the two components of cognitive load (i.e., mental load and mental
effort) in two 6-item subscales. Effort and difficulty ratings are
reliable measures for the cognitive processing that contributes to
cognitive load [13].

System Usability Scale. To measure the usability of the guidance
approaches, we adapted the items of the System Usability Scale
to fit the purpose of the checklist and strategy evaluation [7].

3.3 Tasks
We ask participants to perform three code reviews clarifying that
they only have to look for functional defects in the code. The code
changes to review are taken from a previous experiment on code
review and contain both original and seeded defects [5]. All the
changes are from the text editor jEdit, a system that was successfully
employed in previous studies [5, 28]. The first short code change
contains three defects, while the others contain nine and ten defects,
respectively. The two large changes are presented to the participants
in a randomized order. A description of the defects is publicly
available [4].

Developers enter remarks in the code review UI by writing a
comment in a text area that appears on any line the reviewer se-
lects. A remark (Reported defect) is a note of the developer in natural
language pointing at a place of a potential defect. As done previ-
ously [5], we count a remark as referring to a defect, if it is in
the right position and can make a reader aware of the defect. One
author rates all the remarks, a second author does the same for a
subset and, then, the inter-rater agreement is computed.
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Table 1: The variables of the study.

Name Description Scale Operationalization
Independent variables (design):
Guidance approach The guidance provided by the tool to the partici-

pant: none, checklist, or strategy
nominal see Sect. 3.2 and 3.3; randomized.

Dependent variables:
Number of detected
defects

Total detected functional defects, over all reviews
by the participant (RQ1)

ratio see Sec. 3.1

Review time The needed net review time, i.e., the time needed
for all the reviews subtracting pauses (RQ1)

ratio Automatically measured by tool for each review
task. Pauses are toggled by the participant.

Review
effectiveness

Ratio of defects found by the participant over the
total number of defects in the code change [6]

ratio Computed at the end using the number of de-
tected defects and the total number of defects.

Review efficiency Number of defects found per hour spent review-
ing [6]

ratio Computed at the end using the number of de-
tected defects and the review time.

Cognitive load Load imposed on a person’s cognitive system
while performing a particular task [25] (RQ 2)

ordinal see Sect. 3.1 and 3.2

Treated/Measured variables:
Prof. development
experience

Years of experience with professional software
development

ordinal Measured: 6-point scale (“never” . . . “11 years or
more”), questionnaire

Java experience Years of experience with the Java programming
language

ordinal Measured: 6-point scale (“never” . . . “11 years or
more”), questionnaire

Code review
experience

The number of years of experience with code
reviews

ordinal Measured: 6-point scale (“never” . . . “11 years or
more”), questionnaire

Current program.
practice

How often the participant currently programs ordinal Measured: 5-point scale (“not” . . . “daily or more
often”), questionnaire

Current code review
practice

How often the participant currentyl performs
code reviews

ordinal Measured: 5-point scale (“not” . . . “daily or more
often”), questionnaire

Fitness Perceived tiredness or fitness of the participant
before the experiment

ordinal Measured: 5-point scale (“very tired” . . . “very
fit”), questionnaire

Experience with
jEdit

Whether the participant has experience with the
jEdit editor, the source of the changes to review

ordinal Measured: 3-point scale (“none”, “used”, “con-
tributed”), questionnaire

Code change Code change under review, including the con-
tained defects

nominal Design: Each reviewer has to review three differ-
ent code changes

Change part order Order of presenting the code changes nominal For the two larger changes, the order is randomly
chosen from 4 possibilities (see [5])

Usability Perceived efficiency, effectiveness and satisfac-
tion in the use of an object [7].

ordinal Measured: 5-point scale (“agree” . . . “disagree”),
questionnaire

Understandability Participants’ understanding of the code. Number
of correct answers over all answers per change

ratio Measured: Multiple choice questions on the re-
viewed code change (available in [30])

3.4 Participants
The sample consists of about 100 developers from an Indian soft-
ware development company normally hired for outsourcing projects.
This company provides a wide range of services (e.g., web develop-
ment, mobile development, and DevOps) and has more than 2,000
employees. We contacted the company via email and agreed to
conduct the experiment in multiple iterations. Proceeding this way,
we can adjust the experiment setup, if necessary: e.g., asking for
participants with longer programming experience.

The experiment participants are going to be randomly assigned
to one of the three conditions (no guidance, checklist, and strategy).
The review tasks are performed in fulfillment of an official contract
with the company and, therefore, we expect developers to complete
them as part of their official working duties. In case we detect

irregularities or drop-outs, we will ask the company to provide
replacements.

We performed a power analysis to estimate the sample size
needed to identify existing differences between the treatment groups.
Based on previous studies, we do not expect a large effect size to
appear [14]. The sample size is calculated using a standard setting
for an ANOVA medium effect size [10]. The estimated total sample
size is 66 participants.

The selection of the sample of developers who take part in the
experiment is up to the project manager of the company. However,
we are going to specify the number of participants in each iteration
of the experiment and the required level of experience with Java.
Pilot. We initially contacted the aforementioned company with
the aim of expanding our previous experiment on the effects of
ordering code changes on review effectiveness and efficiency [5].
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Figure 1: Partial view of the checklist implementation in the web-based experiment UI.

We conducted a pilot with 29 developers who did not receive any
guidance in their review. Unexpectedly, the participants were not
able to identify many defects.This finding triggered the idea to
investigate guidance approaches to help reviewers become more
effective. Moreover, it allowed us to test the experiment platform
as well as the collaboration setup with the company.

3.5 Execution Plan
Participants access the experiment online via a provided URL. The
assignment is rolled out in batches of 10 to 20 developers, to check
for problems after each batch. The tool presents the following
workflow to each participant:
Welcome. A welcome page, containing general information about
the experiment and indications on how it takes place. We ask
for informed consent and explicitly request the developers not
to share information about the experiment with each other. We
explain that participation is voluntary and can be canceled at any
time.

Explanation. An explanation of the review tasks. It emphasizes
that participants should focus on finding functional issues. We
also give a brief explanation of the relevant support technique
and an introduction to the software system to review.

Three code review tasks. In addition to the review tasks, the par-
ticipant is presented with a questionnaire to measure cognitive
load at the end of each task.

Usability. If the participant is assigned to the checklist or strategy
group, they are presented with a questionnaire adapted from the
System Usability Scale [7] to evaluate the usability and quality
of developed treatments. Moreover, participants are asked about
previous knowledge of jEdit.

Demographics. General demographics questions: to gain a deeper
understanding of the participants in each treatment group, we
ask them general questions about potential confounders.

Closing. Final optional remarks on the experiment and ending.

3.6 Analysis Plan
Data Cleaning. We remove participants who do not finish all the
reviews. We regard participants who spent less than 5 minutes

on a review and entered no review remark as ‘did not finish’. We
also exclude participants who restart the experiment or partici-
pate several times (we collect client IPs—hashed to guarantee data
anonymization—and cookies). Furthermore, we control the devel-
opers’ comprehension of the system by asking questions about
the change as code comprehension is an important condition for
good reviews [1, 26]. We do not plan to remove other outliers
unless we find specific reasons to believe the data is not valid.

Descriptive Statistics. We present descriptive statistics for the
demographic, dependent, and independent variables per each
treatment group by reporting means and standard deviations
of respective variables. We present a correlation matrix table to
assess potential covariance and relationships between examined
variables.

Inferential Statistics. We take a frequentist stance. To verify our
hypotheses for RQ1, we will conduct a One-way ANOVA to iden-
tify whether a difference between the three treatment groups
exists and report the effect size. We will explore these differences
further by using Tukey’s Range Test to do the post-hoc analysis.
We use mediation analysis [29] for RQ2. We assess whether there
is a partial or full mediation [21, 22] of the examined relationship
by cognitive load using the mediation R package.

Validity Threats. The implementation of the treatments might
be a validity threat. To check it, we measure the checklist/strategy
usability. Furthermore, the validity of the study might be under-
mined by our choice of changes to review. To control for overly
complicated changes, we ask developers about their comprehen-
sion of the code. All the participants work in the same company
and have, at the best of our knowledge, a very similar technical
and cultural background; this limits the generalizability of our
findings.
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