
CHANGEVIZ: Enhancing the GitHub Pull Request
Interface with Method Call Information
Lorenzo Gasparini,∗ Enrico Fregnan,† Larissa Braz,† Tobias Baum,‡ Alberto Bacchelli†

∗Independent researcher, †University of Zurich, Switzerland, ‡Leibniz Universität Hannover, Germany

Abstract—Code review is a widely adopted software develop-
ment practice aimed at finding defects, improving software qual-
ity, and transferring knowledge among developers. Performing
an effective code review is a challenging task for developers. Two
of the main challenges reviewers face are (1) understanding the
content of a review change-set and (2) assessing the impact of
a change on the codebase. Visualization techniques can be used
to increase developers’ understanding of a changeset to review
and its context. However, only a few attempts have been made
to apply visualization to code review.

In this paper, we present a novel approach we devised to
support developers in understanding GitHub pull requests. Our
approach expands the GitHub interface with two lateral bars to
let developers navigate to the definition/uses of the methods in
the changeset under review.

We evaluated our approach’s interface through (1) interviews
with eight developers and (2) a survey with 12 participants. Based
on the results of this evaluation, we implemented our approach
in a web-based tool, CHANGEVIZ.
Pre-print, data and materials, and demo video: https://doi.org/
10.5281/zenodo.5175927.

Index Terms—Software Visualization, Code Review

I. INTRODUCTION

Reviewing code written by other developers before integrat-
ing it into production is a widely used software development
practice. It is aimed at finding defects [1], improving software
quality [2], [3], and transferring knowledge among develop-
ers [4], [5]. Contemporary code review (a.k.a. Modern Code
Review) is (1) change-based, (2) informal, (3) asynchronous,
and (4) supported by tools [5]–[7].

Developers find it most challenging to (1) understand the
changes they are set to review [4], [8], [9], especially when
dealing with large sets of changes [1], and (2) assess the
impact of a change [4]. Indeed, to conduct a review effectively,
developers need not only to understand the code that was
modified but also its context.

Researchers have proposed different approaches to sup-
port developers’ understanding during code review: e.g., re-
ordering code changes highlighting their relations [3] and
separating unrelated code changes [10].

Among the devised approaches, visualizing interactive in-
formation on the code might be a promising way to support de-
velopers during code review. Previous studies already showed
the benefits of visualization techniques for developers [11]–
[13]: e.g., supporting them in better understanding or navi-
gating the code. However, visualization techniques to support
code review remain largely unexplored. In particular, using
software visualization to support reviewing a single changeset

(e.g., a pull request) is largely unexplored. We argue that
visualization techniques can help developers in understanding
a changeset under review as well as assessing its impact on
the whole codebase.

In this paper, we present CHANGEVIZ, a publicly avail-
able [14] web-based tool we devised for GitHub pull requests.
CHANGEVIZ combines the interface offered by GitHub with
the visualization approach of STACKSPLORER [15]. Our tool
adds two lateral bars (a definitions bar and a references bar)
to the traditional GitHub interface, thus allowing the user
to navigate from and to the method calls/declarations in the
code under review. Through this functionality, we aim to
support developers not only in understanding the content of
a review change but also in better assessing its impact on the
whole codebase. With CHANGEVIZ, developers can quickly
visualize the code related to the method calls/declarations
without switching context from the review.

We evaluated a presentation of our visualization approach
with developers, performing 8 interviews and a survey with
12 participants. We used the collected feedback to improve
our visualization approach iteratively; then, we implemented
it into CHANGEVIZ. A video showing a demo of our tool is
available here [14].

II. BACKGROUND AND RELATED WORK

Software visualization is the use of visual means to study the
structure and evolution of software [13]. In the context of code
review, only a few approaches based on software visualization
have been proposed so far.

Tymchuk et al. [16] devised VIDI, a tool to support devel-
opers in reviewing the design of a system. VIDI employs a
city-based visualization paradigm, where classes are shown as
buildings formed by the methods they contain. VIDI shows
and focuses on the whole design of the system in which the
code change is embedded. Oosterwal et al. [17] devised OPE-
RIAS, a tool that displays test coverage information concerning
a single pull request under review.

Our approach employs the same visualization paradigm
as STACKSPLORER [15], but with the aim of reviewing
GitHub pull requests. STACKSPLORER works in the IDE and
allows developers to navigate upstream from a method to
the method callers or downstream to the method definition.
STACKSPLORER implements two lateral bars (on the right and
left of the code window) that allow developers to navigate the
method call relationships. This feature increases developers’
awareness of the context of the code they are inspecting.

https://doi.org/10.5281/zenodo.5175927
https://doi.org/10.5281/zenodo.5175927

For this reason, we selected the visualization approach of
STACKSPLORER as an ideal candidate to be applied to code
review. Being able to quickly inspect the declaration/use of
a method used/declared in a changeset to review without
interrupting the flow of the review has the potential to support
developers’ understanding of the changeset and its impact on
the codebase.

Furthermore, an investigation conducted by Krämer et
al. [18] showed the effectiveness of STACKSPLORER in sup-
porting developers in performing code maintenance, decreas-
ing the time needed to complete these tasks. This result gives
an initial indication of the benefits of such a visualization
paradigm and further contributed to our decision to apply
this approach in the context of code review. Adapting the
paradigm of STACKSPLORER to GitHub pull requests came
with a set of challenges (further explained in Section VI):
e.g., (1), differently from the IDE, a PR contains both new
and old code; and (2) a PR may contain different programming
languages.

III. PRELIMINARY EVALUATION

Before implementing our tool, we evaluated the visualiza-
tion we devised. To this aim, we interviewed eight software
developers with experience in Java and the GitHub review
interface. We walked them through a storyboard portraying
the interface of a CHANGEVIZ’s prototype and a sequence
of realistic interactions with it. We collected participants’
feedback by using a think-aloud protocol [19] during the walk-
through.

After each interview, we analyzed the participants’ com-
ments to identify problems and areas of improvement, if any,
then modified the prototype accordingly. We performed a total
of three iterations, after which we reached a stable version that
did not exhibit any design flaws according to the participants.

Most of the participants appreciated how CHANGEVIZ is
similar to the interface of the code review tools they are
familiar with. For instance, one of the participants explained:
“[CHANGEVIZ] is nice because developers are familiar with
this view.” In the second iteration of our evaluation, following
a participant’s suggestion, we modified the call-graph explo-
ration feature so that when the class containing the refer-
ence/definition is opened, the code is automatically scrolled to
the position of the reference/definition and an arrow indicates
the exact location.

The original design of the tool also included a horizontal
scroll bar to visualize two tabs next to each other. However,
this feature received criticism from multiple participants in
the third iteration; for example, a participant explained: “The
horizontal bar scrolling is more fancy than useful, you could
just select the tab with a click.” Therefore, we removed it from
our design.

Once we reached a stable version of the design, we evalua-
ted how developers would assess their usability by seeing a
mock in action in a video. We did this through a survey with
12 participants (we also invited the participants who took part
in the interviews). All participants had at least two years of

programming experience, most of them reported to program
daily and to review code on a weekly basis, and they mainly
used GitHub pull requests for reviews. As with the interviews,
our goal was to collect feedback on the presentation of our
visualization approach before implementing it in a tool.

In the survey, we asked participants to watch a short (less
than five minutes) video explaining the tool’s interface and
the available interactions. Then, we asked them to evaluate
the perceived usability of the tool through an adapted SUS
(System Usability Scale [20]) questionnaire: We removed the
last two items (which refers to the use of the tool in practice)
since participants could not try the tool. In this way, we
obtained a score in a range from 0 to 80. Then, to compare this
score with the finding of existing literature, we normalized it
from 0 to 100. Overall, our design received a usability score of
66.67 (positioning between an ‘OK’ and ‘Good’ design [21]).
In particular, participants believed the tool would be easy to
learn and use (avg. item score of 4 and 3.5, respectively).

IV. CHANGEVIZ

Based on the positive feedback collected by developers,
we implement our visualization approach in a tool, called
CHANGEVIZ.

Figure 1 shows the main view of CHANGEVIZ. In this
example, we use our tool to visualize pull request #2789 in
Retrofit [22]. The item marked with a 1 in Figure 1 points
to the loading bar: The user inputs the pull request URL and
clicks on the Load button to perform a review. The tool then
loads the changeset diff right below 2 , similarly to the diff
proposed by standard code review tools, including GitHub.

CHANGEVIZ presents the unified diffs of each modified
file one after the other and applies syntax highlighting. To
expand the context of a diff, the user can click on the path of
a modified file. The tool will show the complete diff of the
selected file with an infinite context.

CHANGEVIZ presents two sidebars (i.e., References and
Definitions) that allow the reviewer to navigate the context
of the change under review by following the call/declaration
relationships of the methods. These lateral bars represent
the main novelty of CHANGEVIZ’s interface with respect to
GitHub’s review interface. Figure 2 details the sidebars.
References sidebar. The References sidebar is positioned on
the left-hand side of the code (3 in Figure 1). Figure 2a shows
how CHANGEVIZ reports the reference information. Figure 2b
shows an example of the information displayed to the user
when their mouse hovers over an element in the references’
bar. For each method whose declaration is contained in the
portion of code shown in the diff, CHANGEVIZ automatically
displays the list of references (i.e., calls) to the method in
other parts of the codebase. More specifically, it displays the
following information about each reference to a method: (1)
the Java file containing the method call, (2) the line number
where it is located, and (3) the method call itself (Figure 2a).
In addition, if the file containing the method call was also
modified in the changeset under review, the tool shows a pencil
next to the file name to inform the user.

1

2

3 4

Fig. 1: Interface of CHANGEVIZ visualizing a pull request from GitHub.

Each list of references is vertically aligned with the cor-
responding (portion of a) method declaration, establishing a
visual connection between the two, and a scroll bar can be
used to browse if needed. Moreover, the tool shows links to
access the source code of methods called by the changed code.

When a specific method call is hovered with the mouse
cursor, an information box appears (Figure 2b) and provides
the file’s path containing the reference and the complete
method call. By clicking on the method call, the user can
access the source code of the file that contains it (displayed
in a modal window). The modal window’s content varies
depending on whether the file was modified by the changeset
under review: If the file was modified, the modal window
shows the unified diff of the file; otherwise, it shows its plain
source code only. In both cases, the code is syntax-highlighted.
Moreover, the file is displayed directly to the position of
the method call, whose line number is highlighted to ease
its location. Finally, a user can close the modal window by
clicking outside its boundaries or selecting the close button
on the window’s top right corner.

Definitions sidebar: The Definitions sidebar is displayed on
the right-hand side of the pull request (4 in Figure 1). More
details are offered in Figure 2c and Figure 2d: The former
shows the definition details offered by CHANGEVIZ, while the
latter shows an example of the information displayed to the
user when the mouse hovers on an element in the definitions
bar.

The definitions sidebar mimics the ‘Go to Declaration’
feature offered by common IDEs. It allows the reviewer to
obtain information about the definition of the methods invoked
within the diff (methods declared in external libraries are

excluded). For each method call in the diff, the Definitions
sidebar displays the following information: (1) the name of
the file containing the called method’s definition, (2) the line
range of the definition within that file, and (3) the signature of
the called method (as shown in Figure 2c). In the same fashion
as with the references sidebar, a pencil next to the filename
indicates whether the file containing the method definition was
modified in the current pull request. The definition information
is vertically positioned on the same line as the corresponding
method invocation, which is expanded when it contains mul-
tiple method calls.

By hovering on an element in the definitions sidebar, the
user can obtain: (1) the path of the file containing the method
definition and (2) the qualified signature (which includes the
package and the class to which it belongs) of the method
(Figure 2d). Concerning the references, clicking on a definition
opens the source code (or diff, if it was modified) of the file
containing the method’s definition. The code is positioned at
the beginning of the method declaration, and the corresponding
line range is highlighted.

Our video [14] offers an overview of how our tool could
support reviewers during their tasks.

V. CHANGEVIZ: IMPLEMENTATION DETAILS

CHANGEVIZ uses a database to cache the computed method
call information. To compute the references and definitions
information, it retrieves the pull request’s diff from GitHub and
clones the entire Git repository locally. The diff is then applied
to obtain the codebase’s state after the application of the pull
request, and the method call extraction engine is invoked to
extract the method call information of each modified Java file.

Name of the file
originating the

method call

Method call

Line number of
the method call

(a) References detail (b) Mouseover information box of references details

Range of lines of the called
method’s declaration

Called method’s signature
Name of file containing the called method’s
declaration (with the modification indicator)

(c) Definitions details (d) Mouseover information box of definitions details

Fig. 2: Details of CHANGEVIZ’s interface.

The engine is a Java program that uses the JavaParser and
JavaSymbolSolver1 libraries to perform the static analysis of
a Java code base and extract the references and definitions
of a given set of files. When the extraction is completed, the
computed method calls are cached in the database and sent to
the front-end, which, in turn, visualizes them in the sidebars.

When the user clicks on a modified file to expand its context,
a reference or a definition, the tool restores the Git repository’s
state following the application of the pull request. Then the
tool extracts either the source code or the full diff (infinite
context) of the requested file, which the user can visualize in
the modal window.

VI. DESIGN DECISIONS AND LIMITATIONS

While building CHANGEVIZ, we took some design de-
cisions to guide our implementation that might constitute
limitations to be addressed in future investigations.

Emphasis on the new code chunk. A change in GitHub is
composed of two code chunks: (1) the original code before the
change was introduced (old chunk) and (2) the code after it
was applied (new chunk). CHANGEVIZ displays information
only for the method declarations and uses contained in the
new code chunk. We decided to display only the method
call information related to the new code chunk (disregarding
the one of the old chunk) to avoid information overload.
Displaying method information on both the old and new code
chunk may unnecessarily increase the cognitive load on the
reviewer. Moreover, we argue that the new code chunk is
more relevant for reviewers compared to the old one because
reviewers need to assess how the added code modifies the
existing system.

Nonetheless, the choice of focusing on the new code chunk
might have an impact on the potential benefits offered by

1JavaParser and JavaSymbolSolver: https://javaparser.org

CHANGEVIZ. Further studies are necessary to understand
whether and how call information on the old code chunk is
relevant and how this can be effectively combined with the
information already visualized by our tool.

External API methods. When a call in the diff references
a method in an external library, CHANGEVIZ cannot inspect
its definition. This limitation comes from the variety of build
systems used by Java projects, which complicates the auto-
mated retrieval and resolution of external libraries. However,
given the widespread usage of external libraries, including this
functionality in CHANGEVIZ may be a valuable addition to
further increase the support our tool offers.

Navigation. On the one hand, CHANGEVIZ does not allow
the user to iteratively explore the context of references and
definitions. We excluded this feature from CHANGEVIZ as
it might add a significant cognitive load on the reviewers.
Indeed, the results obtained by Kramer et al. [18] suggest that
navigating along multiple edges of the call graph at once may
pose a cognitive challenge for developers. On the other hand, if
the list of callers or callees grows longer, it becomes cluttered.
Therefore future research should be designed and carried out
to investigate aggregation and interaction methods to facilitate
visual exploration of the references, as their number grows.

CHANGEVIZ as a stand-alone application. We implemented
CHANGEVIZ as a stand-alone web application. Developers
need to navigate to the tool’s URL to use it to review their
GitHub pull requests. This choice may limit the future use
of CHANGEVIZ: The majority of developers do not like to
use tools that disrupt their workflow (e.g., tools that are not
integrated with the tools they already use) [23]. In this vein, a
future iteration of CHANGEVIZ could be offered as a browser
extension that integrates with the GitHub review environment,
to which most developers are already accustomed.

Focus on Java and scalability. CHANGEVIZ relies on Java-

https://javaparser.org

Parser and JavaSymbolSolver to analyze the content of a pull
request and to extract the method calls and declarations. For
this reason, our tool can only display references/definitions
information for the Java files in a pull request, thus disre-
garding files written in other programming languages. Since
our tool relies on a parser to extract the information to
visualize, in our implementation, we restricted our focus to
one programming language. Extending the support of the tool
to multiple programming languages increases its applicability.
Therefore, we plan to perform further investigations on the im-
pact of adding other programming languages to CHANGEVIZ.
JavaParser needs to analyze the whole code snapshot of a pull
request to extract information on method calls/declarations.
This task can not be done before the user specifies the pull
request to review and might result in a longer waiting time
before CHANGEVIZ is ready for the review. Moreover, since
JavaParser only analyzes static code snapshots, it can not
extract run-time information: e.g., dynamic binding.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a visualization approach to
support developers in reviewing a GitHub pull request. Our vi-
sualization approach enhances the way in which pull requests
are displayed on GitHub. Following a visualization approach
similar to STACKSPLORER [15], our approach complements
the GitHub interface with two lateral bars, a References
sidebar, and a Definitions sidebar. These allow the user to
navigate to the code defining or using the methods contained
in a pull request. We evaluated our approach with developers
using (1) a set of eight interviews and (2) an online survey with
12 participants. Based on the collected feedback, we improved
our approach and implemented it in a tool (CHANGEVIZ).

To the best of our knowledge, CHANGEVIZ constitutes one
of the first attempts at devising a visualization approach to
support developers during code review. Our tool tackles two
of the main challenges developers face during code review [4],
[8]: (1) understanding of the content of a review change-
set and (2) assessing the impact of a change on the existing
codebase. Nonetheless, CHANGEVIZ is still an early prototype
with shortcomings that need to be addressed. For example,
our tool is currently designed as a stand-alone application,
despite the fact that developers dislike tools that are not well-
integrated into their existing workflow. This might limit the
adoption of our tool in practice. For this reason, we envision
transforming our tool from a stand-alone application to, for
instance, a GitHub plug-in.

ACKNOWLEDGMENT

A. Bacchelli, L. Braz, and E. Fregnan acknowledge the
support of the Swiss National Science Foundation through the
SNSF Projects No. PP00P2 170529 and PZ00P2 186090.

REFERENCES

[1] T. Baum and K. Schneider, “On the need for a new generation of
code review tools,” in Proceedings of the International Conference on
Product-Focused Software Process Improvement, 2016, pp. 301–308.

[2] A. F. Ackerman, L. S. Buchwald, and F. H. Lewski, “Software inspec-
tions: an effective verification process,” IEEE Software, vol. 6, 1989.

[3] T. Baum, K. Schneider, and A. Bacchelli, “On the optimal order
of reading source code changes for review,” in Proceedings of the
International Conference on Software Maintenance and Evolution, 2017,
pp. 329–340.

[4] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in Proceedings of the International Conference
on Software Engineering, 2013, pp. 712–721.

[5] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli,
“Modern code review: A case study at google,” in Proceedings of
the 40th International Conference on Software Engineering: Software
Engineering in Practice, 2018, pp. 181–190.

[6] P. Rigby and C. Bird, “Convergent contemporary software peer review
practices,” in Proceedings of the Joint Meeting on Foundations of
Software Engineering, 2013, pp. 202–212.

[7] T. Baum, O. Liskin, K. Niklas, and K. Schneider, “A faceted clas-
sification scheme for change-based industrial code review processes,”
in Proceedings of the International Conference on Software Quality,
Reliability and Security (QRS), 2016, pp. 74–85.

[8] L. MacLeod, M. Greiler, M.-A. Storey, C. Bird, and J. Czerwonka,
“Code reviewing in the trenches: Challenges and best practices,” IEEE
Software, vol. 35, no. 4, pp. 34–42, 2017.

[9] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software
engineers understand code changes? an exploratory study in industry,”
in Proceedings of the International Symposium on the Foundations of
Software Engineering, 2012, pp. 1–11.

[10] M. Dias, A. Bacchelli, G. Gousios, D. Cassou, and S. Ducasse, “Un-
tangling fine-grained code changes,” in Proceedings of the Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER), 2015, pp. 341–350.

[11] P. Khaloo, M. Maghoumi, E. Taranta, D. Bettner, and J. Laviola, “Code
Park: A New 3D Code Visualization Tool,” in Proceedings of the
Working Conference on Software Visualization, 2017.

[12] S. G. Eick, J. L. Steffen, and E. E. Sumner, “Seesoft—A Tool for
Visualizing Line Oriented Software Statistics,” Transactions on Software
Engineering, 1992.

[13] A.-L. Mattila, P. Ihantola, T. Kilamo, A. Luoto, M. Nurminen, and
H. Väätäjä, “Software visualization today: Systematic literature review,”
in Proceedings of the International Academic Mindtrek Conference,
2016, pp. 262–271.

[14] “CHANGEVIZ materials,” https://doi.org/10.5281/zenodo.5175927.
[15] T. Karrer, J.-P. Krämer, J. Diehl, B. Hartmann, and J. Borchers,

“Stacksplorer: Call graph navigation helps increasing code maintenance
efficiency,” in Proceedings of the symposium on User interface software
and technology, 2011, pp. 217–224.

[16] Y. Tymchuk, A. Mocci, and M. Lanza, “Code review: Veni, vidi, vici,”
in Proceedings of the International Conference on Software Analysis,
Evolution, and Reengineering, 2015, pp. 151–160.

[17] S. Oosterwaal, A. v. Deursen, R. Coelho, A. A. Sawant, and A. Bac-
chelli, “Visualizing code and coverage changes for code review,” in
Proceedings of the International Symposium on Foundations of Software
Engineering, 2016, pp. 1038–1041.

[18] J.-P. Krämer, T. Karrer, J. Kurz, M. Wittenhagen, and J. Borchers, “How
tools in ides shape developers’ navigation behavior,” in Proceedings of
the Conference on Human Factors in Computing Systems, 2013, pp.
3073–3082.

[19] A. H. Jørgensen, “Thinking-aloud in user interface design: a method
promoting cognitive ergonomics,” Ergonomics, vol. 33, no. 4, pp. 501–
507, 1990.

[20] J. Brooke et al., “Sus-a quick and dirty usability scale. usability
evaluation in industry,” Usability evaluation in industry, vol. 189(194),
pp. 4–7, 1996.

[21] A. Bangor, P. T. Kortum, and J. T. Miller, “An empirical evaluation of the
system usability scale,” Intl. Journal of Human–Computer Interaction,
vol. 24, no. 6, pp. 574–594, 2008.

[22] “Square retrofit pull request #2789 on GitHub,” https://github.com/
square/retrofit/pull/2789, 2018.

[23] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in Proceed-
ings of the International Conference on Software Engineering, 2013, pp.

672–681.

https://doi.org/10.5281/zenodo.5175927
https://github.com/square/retrofit/pull/2789
https://github.com/square/retrofit/pull/2789

	Introduction
	Background and Related Work
	Preliminary Evaluation
	ChangeViz
	ChangeViz: Implementation Details
	Design Decisions and Limitations
	Conclusion and Future Work
	References

